STEAM CLOWN[™] PRODUCTION

OHM'S LAW AND ELECTRONIC CIRCUITS

Page 1 - Cyber Security Class

ELECTRICAL CIRCUITS

All you need to be an inventor is a good imagination and a pile of junk.

-Thomas Edison

Page 2 - Cyber Security Class

OHM'S LAW

Georg Simon Ohm (1787-1854)

I = V / R

I = Current (Amperes) (amps)

V = Voltage (Volts)

R = Resistance (ohms)

Page 3 - Cyber Security Class

OHM'S LAW

- Ohm's Law explains the relationship between voltage (V or E), current (I) and resistance (R)
- The amount of current in a circuit is dependent on its resistance and the applied voltage. Specifically I = V/R

- If you know any two of the factors V, I, and R you can calculate the third.
- Current I = V/R
- Voltage V = IR
- Resistance R = V/I

1 ampere = 1 coulomb per second

Page 5 - Cyber Security Class

Quantity	Symbol	Unit of Measurement	Unit Abbreviation
Current	1	Ampere ("Amp")	Α
Voltage	Εorν	Volt	V
Resistance	R	Ohm	Ω

Page 6 - Cyber Security Class

VOLTAGE (V)

• It is the push or pressure behind current flow through a circuit, and is measured in (V) volts.

Page 7 - Cyber Security Class

CURRENT

- Current refers to the quantity/volume of electrical flow. Measured in Amps (A)
- The symbol for current is I (for intensity) and is measured in amperes

STEAM CLOW

© Copyright 2016 STEAM Clown

RESISTANCE

- Resistance to the flow of the current. Measured in Ohms
- Opposition to the flow of current is termed resistance.
- The fact that a wire can become hot from the flow of current is evidence of resistance.
- Conductors have very little resistance.
- Insulators have large amounts of resistance.

Page 9 - Cyber Security Class

TRICK TO REMEMBER OHM'S LAW

V = Voltage = Volts I = Amperes = Amps R = Resistance = Ohms

Page 11 - Cyber Security Class

Page 12 - Cyber Security Class

HOW DO CALCULATE CURRENT?

- •Voltage is 5V
- •Resistance is 220 Ω
- •Current = Amp ?

© Copyright 2016 STEAM Clown

Page 13 - Cyber Security Class

HOW DO CALCULATE RESISTANCE?

5

- •Voltage is 5V
- •Current is 10mA
- •Resistance = Ohm?

-100 R = 500 Ω

Page 14 - Cyber Security Class

HOW DO CALCULATE VOLTAGE?

- Resistance is $1K_{\Omega}$
- •Current is 200 mA
- •Voltage = V?

$V = I^*R$ $V = .2^*1K\Omega$ V = 200v

© Copyright 2016 STEAM Clown

Page 15 - Cyber Security Class

WOULD THIS WORK?

Page 16 - Cyber Security Class

WOULD THIS WORK?

Page 17 - Cyber Security Class

WOULD THIS WORK?

Page 18 - Cyber Security Class

THE CENTRAL CONCEPT: CLOSED CIRCUIT

Page 19 - Cyber Security Class

CIRCUIT DIAGRAM

Scientists usually draw electric circuits using symbols;

Page 20 - Cyber Security Class

Current is Directly Proportional to Voltage for a Constant Resistance

OHM's LAW

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2016 STEAM Clown™

Page 21 - Cyber Security Class

Current is Inversely Proportional to Resistance for a Constant Voltage

OHM's LAW

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2016 STEAM Clown™

Page 22 - Cyber Security Class

MEASURING VOLTAGE

- Set the DMM to Ω (to measure Resistance)
- Set it to the closest value above the target resistor you are measuring

This is how we measure volts in a circuit

Page 23 - Cyber Security Class

MEASURING CURRENT

- Set the DMM to Amps (to measure Current)
- Set it to the closest value above the target current you expect to measure

This is how we measure Amps in a circuit **STEAN**

Page 24 - Cyber Security Class

GENERAL RULE.

- 1. Assuming the resistance does not change:
- As voltage increases, current increases.
- as voltage decreases, current decreases.
- 2. Assuming the voltage does not change:
- As resistance increases, current decreases.
- As resistance decreases, current increases.

Page 25 - Cyber Security Class

RECAP!!

- What is Voltage?
- What is Current?
- What is Resistance?

Page 26 - Cyber Security Class

SIMPLE CIRCUITS

- Series circuit
 - OAll in a row
 - $\circ 1$ path for electricity
 - o1 light goes out and the circuit is broken
- Parallel circuit

 Many paths for electricity
 light goes out and the others stay on

Page 27 - Cyber Security Class

RESISTOR COLOR CHART

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2016 STEAM Clown™

Page 28 - Cyber Security Class

STEAM CLOWN[™] PRODUCTION

LAB TIME

Page 29 - Cyber Security Class