Python Lists

Chapter 8

Python for Informatics: Exploring Information
www.pythonlearn.com

OPCEN.MIChigan

Unless otherwise noted, the content of this course material is licensed under a Creative
Commons Attribution 3.0 License.
http://creativecommons.org/licenses/by/3.0/.

Copyright 2010- Charles Severance

UNIVERSITY OF MICHIGAN ‘ @ @ \

UMSI

A List is a kind of Collection

® A collection allows us to put many values in a single “variable”

® A collection is nice because we can carry all many values around in
one convenient package.

friends = ['Joseph’, 'Glenn’, 'Sally’]

carryon = [‘'socks’, ‘shirt, perfume’]

What is a Collection”

® Most of our variables have one value in them - when we put a new
value in the variable - the old value is over written

$ python
Python 2.5.2 (r252:6091 |, Feb 22 2008, 07:57:53)

[GCC 4.0.1 (Apple Computer, Inc. build 5363)] on darwin

>>> =2
>>> x = 4
>>> print X

4

List Constants

® List constants are surrounded by
square brakets and the elements
in the list are separated by
commas.

® A list element can be any Python
object - even another list

® A list can be empty

>>> print [|, 24, 76]

[1,24,76]

>>> print [red, 'yellow', 'blue’]
['red’, 'yellow', 'blue’]

>>> print [red’, 24, 98.6]

['red’, 24, 98.599999999999994]
>>> print [|, [5, 6], 7]
[1,[5,6],7]

>>> print |]

]

We already use lists!

foriin[5,4,3,2,1]:
print |
print 'Blastoff!’

— N W A U

Blastoff!

Lists and definite loops - best pals

friends = [Joseph’, 'Glenn’, 'Sally']

for friend in friends :
print 'Happy New Year:', friend —

print 'Done!’ \Happy New Year: JosephHappy

§

Looking Inside Lists

® Just like strings, we can get at any single element in a list using an
index specified in square brackets

>>> friends = [Joseph’, 'Glenn’, 'Sally’]

m Sally >>> print friends[1]

Glenn
0 | pi S>>

Lists are Mutable >>> fruit = Banana

>>> fruit[0] = 'b’

Traceback
® Strings are "immutable” - we TypeError: 'str' object does not
cannot change the contents of support item assignment
a string - we must make a >>> x = fruit.lower ()
new string to make any >>> print x
change banana
>>> |otto = [2, 14, 26,41, 63]
® Lists are "mutable” - we can >>> print lotto[2, 14,26, 41, 63]
change an element of a list >>> |otto[2] = 28
using the index operator >>> print lotto

2, 14,28, 41, 63]

How is a List!?

. | | >>> greet = 'Hello Bob’
The function takes a list as a >>> print len(greet)

parameter and returns the 9

number of elements in the list >>> x = [1,2, 'joe, 99]

>>> pri
® Actually tells us the number . print len(x)
of elements of any set or sequence oo

(i.e. such as a string...)

Using the function

>>> print (4)
® The function [0, 1,2, 3]
that range from zero >>> friends = ['Joseph', 'Glenn’, 'SaIIy']
to one less than the >>> print len(friends)
3
® We can construct an index loop | >>> print (len(friends))
using for and an integer iterator [0, I, 2]
>>>

A tale of two loops...

>>> friends = ['Joseph’, 'Glenn', 'Sally']
>>> print len(friends)

friends = [Joseph’, 'Glenn’, 'Sally'] 3
>>> print (len(friends))
for friend in friends : [0, 1, 2]
print 'Happy New Year:', friend >>>

for i in EEERES) B
friend = friends]i] Happy New Year: Joseph
print 'Happy New Year:', friend Happy New Year: Glenn
Happy New Year: Sally

Concatenating lists using +

® We can create a new list by adding
two exsiting lists together

>>>a=1]I,2,3]
>>>b =1[4,5, 6]
>>>c=3+b
>>> print C
[1,2,3,4,5, 6]
>>> print a
[1,2, 3]

Lists can be sliced using :

>>> t = [9, 41, 12, 3,74, | 5]
>>> []:3]

[41,12]

>>> t[:4]

9,41, 12, 3]

>>> t[3:]

3,74, 15]

>>> t[]

9,41, 12,3, 74, 15]

Remember: Just like in
strings, the second number
is " |

>>> x = list()

>>> (x)<type 'list'>

>>> dir(x)['append’, 'count’, 'extend’, 'index/, 'insert’, 'pop/,
'remove’, 'reverse’, 'sort']

>>>

http://docs.python.org/tutorial/datastructures.html

a list from scratch

® We can create an empty

list and then add elements
using the method

® The list stays in order and
new elements are at

the end of the list

>>> stuff = list()

>>> stuff (‘book’)
>>> stuff (99)

>>> print stuff
['book’, 99]

>>> stuff (‘cookie')

>>> print stuff
['book’, 99, 'cookie']

Is Something in a List!

® Python provides two
operators that let you
check if an item is in a list

>>> some = [|,9,2|, 10, |6]
>>> 9 jn some

True
® These are logical >>> |5 in some
operators that return False
True or False >>> 0 not in some
True
® They do not modify the >SS

list

A List is an

A list can hold many items
and keeps those items in the
order until we do something
to change the order

A list can be (i.e.
change its order)

The method (unlike in
strings) means "

Sequence

>>> friends = [Joseph’, 'Glenn’, 'Sally’]
>>> friends ()

>>> print friends

[Glenn', Joseph’, ‘Sally']

>>> print friends[1]

Joseph>>>

Built in

There are a number of

built into Python
that take lists as
parameters

Remember the loops we
built! These are much
simpler

http://docs.python.org/lib/built-in-funcs.html

and Lists

>>>nums = [3,41, 12,9, 74, 15]
>>> print len(nums)

6

>>> print (nums)

7/4>>> print min(nums)

3

>>> print (nums)

154

>>> print (nums)/len(nums)
25

while True :
inp = raw input('Enter a number:
1if inp == 'done' : break
value = float(inp)

print 'Average:', average

Enter a number: 3
Enter a number: 9
Enter a number:5

Enter a number: done
Average: 5.66666666667

numlist = list()

while True :
inp = raw input('Enter a number: ')
if inp == 'done' : break
value = float(inp)
numlist.append(value)

average = sum(numlist) / len(numlist)
print 'Average:', average

Best Friends: Strings and Lists

>>> abc = 'With three words’
>>> stuff = abc.split()

>>> print stuff

['With', 'three’, 'words']

>>> print len(stuff)

3

>>> print stuff[0]

With

>>> print stuff

['With', 'three’, 'words']

>>> for w in stuff :
print w

With
Three

Words
>>>

Split breaks a string into parts produces a list of strings. We think of these as
words. We can access a particular word or loop through all the words.

>>> line = 'A lot of spaces’
>>> etc = line. ()

>>> print etc['A', 'lot', 'of', 'spaces']
>>>

>>> line = 'first;second; third’

>>> thing = line ()

>>> print thing['first;second;third']

>>> print (thing)

1

>>> thing = line ("; ")

>>> print thing['first', 'second', 'third']

>>> print (thing)

i>> When you do not specify a delimiter, multiple

. 13 77 . .
spaces are treated like "one" delimiter.

You can specify what delimiter character to
use in the

From stephen.marquard@uct.ac.za Jan 5 09:14:16 2008

fhand = (‘'mbox-short.txt')

for line in fhand:

line = line ()

if not line (‘From ') : continue
words = line ()

print words[2]

>>> |ine = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008’

>>> words = line ()

>>> print words
['From’, 'stephen.marquard@uct.ac.za’, 'Sat’, 'Jan’, '5','09:14:16', "2008']
>>>

The Double Split Pattern

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
email = words||]

The Double Split Pattern

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split() stephen.marquard@uct.ac.za
email = words[1]
pieces = email.split('@'") ['stephen.marquard', 'uct.ac.za']

The Double Split Pattern

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split() stephen.marquard@uct.ac. za
email = words[1]
pieces = email.split('@'") ['stephen.marquard', 'uct.ac.za']

print pieces[|]

The Double Split Pattern

® Sometimes we split a line one way and then grab one of the pieces of
the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split() stephen.marquard@uct.ac. za
email = words[1]
pieces = email.split('@') ['stephen.marquard', 'uct.ac.za']

print pieces[|]

'uct.ac.za'

List Summary

Concept of a collection ® List methods: append, remove

Lists and definite loops ® Sorting lists

Indexing and lookup ® Splitting strings into lists of
words

List mutability

® Using split to parse strings
Functions: len, min, max, sum

Slicing lists

