WHAT TO ADD NEXT TIME YOU UPDATE?

- Work sheet with 3 and 4 resistors
- Create worksheet of tables
- Add Hypothesis and Questions
- Add Lab and Lecture Objectives
- Add equipment needed
- Add science standards
- Review links for additional content

STEAM CLOWN[™] PRODUCTION

SERIES CIRCUITS

SERIES & PARALLEL CIRCUITS

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2017 STEAM Clown™

TRICK TO REMEMBER OHM'S LAW

SERIES CIRCUIT

- Closed Circuit
- Single Path from +V to GND

SERIES CIRCUITS

SERIES CIRCUIT

• Is the same current is flowing in both resistors?

Yes, there is only one path for the current and it is the same at all points ion the circuit

SERIES CIRCUIT

SERIES CIRCUITS

STEAM CLOWN[™] PRODUCTION

LAB TIME...

GO GET THE FOLLOWING

- Power Supply ← the smaller ones are better
- Power to Breadboard Adaptor
- Breadboard
- About 6 wire
- 1 plastic cup

- Resistors:
 - One $\mathbf{10\Omega}$ resistor
 - Three **330Ω** resistors
 - One 680Ω resistor
 - Two $1K\Omega$ resistors
 - One **2K\Omega** resistor

LOG SOME DATA

- Open your log books
- On the next available Page
 - Note the Date
 - Draw a table ("for a fixed 5 volt power supply")

	Measured Resistance	Measured Voltage	Measured Current
R1 + R2 (measure together)			Х
R1			Х
R2			Х
I (for circuit)	Х	Х	

SERIES CIRCUIT

SERIES CIRCUIT

LAB QUESTION?

How do we measure the total resistance in our series circuit?

What about individual resisters?

Page 14

© Copyright 2017 STEAM Clown™

Measure Individual Resistance

Page 16

© Copyright 2017 STEAM Clown™

LAB QUESTION?

How do we measure the total Voltage in our series circuit?

What about the voltage across the individual resisters?

© Copyright 2017 STEAM Clown™

Measure Individual Voltage

SERIES CIRCUIT VOLTAGE

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2017 STEAM Clown™

LAB QUESTION?

How do we measure the total Current in our series circuit?

What about the voltage through the individual resisters?

Measure Combined Voltage

LOG SOME DATA

- Open your log books
- On the next available Page
 - Note the Date
 - Draw a table ("for a fixed 5 volt power supply")

	Measured Resistance	Measured Voltage	Measured Current
R1 + R2 (measure together)			Х
R1			Х
R2			Х
I (for circuit)	Х	Х	

STEAM CLOWN[™] PRODUCTION

MATH BEHIND THE MEASUREMENTS

SERIES CIRCUITS

CALCULATING SERIES RESISTANCE

SERIES CIRCUIT RESISTANCE

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2017 STEAM Clown™

Calculate R_t

LAB #2 SERIES CIRCUIT

$$R_1 = 330\Omega, R_2 = 680\Omega$$

 $R_1 = 1K\Omega, R_2 = 2K\Omega$
 $R_1 = 680\Omega, R_2 = 1K\Omega$

Create 3 more tables like lab #1, and make the same measurements

© Copyright 2017 STEAM Clown™

STEAM CLOWN[™] PRODUCTION

MATH BEHIND THE MEASUREMENTS

CAN WE CALCULATE THE VOLTAGE ON A RESISTOR IN A SERIES CIRCUIT?

- How does the "battery" "see" the combination of the 2 resistors?
- How do the Resistors "see" the "battery"?
- Nether Resistor is connected directly across the "battery"
- How much voltage is applied to each Resistor?

Series Resistors share or <u>Divide</u> the applied voltage

VOLTAGE DIVISION WITH RESISTORS

Where: R_t = Total Resistance of series string R_x = Resistor for which we are calculating the voltage drop V = Applied voltage

$$V_x$$
 = Voltage drop across R_x

LETS DO SOME CALCULATIONS

$$R_1 = 330\Omega, R_2 = 680\Omega, V = 5v$$

 $R_1 = 1.01K\Omega$ $R_2 = 330\Omega$

$$V_x = V(\frac{R_x}{R_t})$$

R1

R2

© Copyright 2017 STEAM Clown™

$$R_{t} = 1.01 \text{K}\Omega \quad R_{x} = 330\Omega$$

$$V_{x} = V_{z} \left(\frac{R_{x}^{3} 30\Omega}{R_{t} 01 K\Omega} \right)$$

$$V_{x} = 1.63V$$

LETS DO SOME CALCULATIONS

$$R_1 = 330\Omega, R_2 = 680\Omega, V = 5v$$

 $R_t = 1.01K\Omega$ $R_x = 680\Omega$

V

X

 $V_x = 3.37V$

 $\Omega 086$

 $d1K\Omega'$

(,

© Copyright 2017 STEAM Clown™

LAB #3 SERIES CIRCUIT

VARIABLE RESISTORS

- Resistor that has the ability to change resistance manually
- Resistor that have it's resistance change do to environmental effects

Potentiometer

Measure Variable Voltage

SERIES CIRCUIT VOLTAGE

Measure Variable Voltage

SERIES CIRCUIT VOLTAGE

Measure Variable Voltage

Page 39

?Ω

VARIABLE RESISTOR LAB

- Turn the Potentiometer to have equal resistance on both sides
 - ie: for a 10KΩ Potentiometer each segment should be about 5KΩ
- Measure:
 - The resistance of each side,
 - then connect power, and measure the voltage

Measure Variable Voltage

STEAM CLOWN[™] PRODUCTION

MATH BEHIND THE MEASUREMENTS

HOW DO YOU FIND THE RESISTANCE GIVEN A KNOWN VOLTAGE DIVIDER?

- We know that you can find V_x When you know R_x
- How do we manipulate to solve for R_x?

$R_t * Vx = V\left(\frac{R_x}{R_t}\right) * Rt$

$R_t * Vx = V(Rx)$ $R_t * Vx = VRx$

 VR_{χ} $R_t * V x$

 $\frac{R_t * Vx}{I = Rx}$

 $R_t * V x$ $R_x = -$

 $R_t * V x$ $R_{x} = -$

LETS DO SOME CALCULATIONS

$$R_1 = 5.24K\Omega, R_2 = 10K\Omega, V = 5v$$

25,24KΩ

 $5.24K\Omega'$

$$R_t = 15.24 \text{K} \Omega$$
 $R_x = 5.24 \text{K} \Omega$

 $V_x = 1.719V$

LETS DO SOME CALCULATIONS

Rp

R2

10 N

VARIABLE RESISTOR LAB

- \bullet Build the circuit with the variable R_p and fixed R_2
- Turn the Potentiometer and measure the Voltage
- Using this formula calculate R_p

$$R_x = \frac{R_t * Vx}{V}$$

STEAM CLOWN[™] PRODUCTION

REFERENCE

WORK SHEET - LAB / QUIZ

- Objectives
 - Demonstrate knowledge of Ohms Law
 - Demonstrate proper use of a Digital Multi Meter
 - Demonstrate knowledge of Series Circuits fundamentals
 - Apply the Voltage divider principles
- Equipment needed
 - 5 volt DC power supply and bread board adaptor
 - DMM
 - Bread board
 - Assorted resistors and wires

LETS DO SOME CALCULATIONS

$$R_1 = 330\Omega, R_2 = 680\Omega, V = 5v$$

$$R_t = 330\Omega + 680\Omega$$

$$R_t = 1010\Omega \quad R_t = 1.01 \text{KG}$$

$$V_x = V(\frac{R_x}{R_t})$$

SERIES CIRCUIT RESISTANCE

Calculate R₊

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2017 STEAM Clown™

SERIES CIRCUIT

SERIES CIRCUIT

MEASURING VOLTAGE

- Set the DMM to Ω (to measure Resistance)
- Set it to the closest value above the target resi you are measuring

This is how we measure volts in a circuit

MEASURING CURRENT

- Set the DMM to Amps (to measure Current)
- Set it to the closest value above the target current you expect to measu

This is how we measure Amps in a circuit s

ELECTRONIC SYMBOLS

SOURCES

- 30 years of electronics in my head...
- Electronic Projects for Photographers
- <u>https://www.youtube.com/watch?v=Hck8k6ALBV8</u>
- <u>https://www.youtube.com/watch?v=2d8CUQokims</u>
- <u>https://adamcap.com/schoolwork/series-and-parallel-circuits-lab/</u> ← add some of the hypothesis and Questions to the labs
- <u>http://www.thephysicsaviary.com/Physics/Programs/Labs/SeriesCircui</u> <u>tLab/index.html</u> <-- maybe add a lab to prove current is the same...
- <u>http://www.freeclassnotesonline.com/Series-Circuits-Lab.php</u> <--good lab work sheet... add to presentation

