WHAT TO ADD NEXT TIME YOU UPDATE?

- Work sheet with 3 and 4 resistors
- Create worksheet of tables
- Add Hypothesis and Questions
- Add Lab and Lecture Objectives
- Add equipment needed
- Add science standards
- Review links for additional content

SHEAM CLOWK™ PRODUCHON

SERIES CIRCUITS

series \& Parallel circuits

SERIES CIRCUIT

PARALLEL CIRCUIT

TRICK TO REMEMBER OHM'S LAW

STEAM CLOWNTM
d Squeaky,finge PRODUCTIONS
© Copyright 2017 STEAM Clown™

SERIES CIRCUIT

Closed Circuit

- Single Path from +V to GND

SERIES CIRCUITS

STEAM CLOWN'm
d Squalky-finge PRODUCTIONS
© Copyright 2017 STEAM Clown"

SERIES CIRCUIT

- Is the same current is flowing in both resistors?

Yes, there is only one path for the current and it is the same at all points ion the circuit

SERIES CIRCUIT

SERIES CIRCUITS

STEAM CLOWN™
d Squeakysfinge PRODUCTIONS
© Copyright 2017 STEAM Clown™

SHEAM CLOWK™ PRODUCHON

LAB TIME...

d Squeaky,finge PRODUCTIONS

GO GET THE FOLLOWING

- Power Supply \leftarrow the smaller ones are better
- Power to Breadboard

Adaptor

- Breadboard
- About 6 wire
- 1 plastic cup
- Resistors:
- One 10Ω resistor
- Three 330Ω resistors
- One 680』 resistor- Two 1K』 resistors
- One 2K $\mathbf{~ r e s i s t o r ~}$
- Open your log books
- On the next available Page
- Note the Date
- Draw a table ("for a fixed 5 volt power supply")

	Measured Resistance	Measured Voltage	Measured Current
R1 + R2 (measure together)			x
R1			x
R2			x
I (for circuit)	x	x	

SERIES CIRCUIT

fritzing

SERIES CIRCUIT

LAB QUESTION?

How do we measure the total resistance in our series circuit?

What about individual resisters?

sERIES CIRCUIT RESISTANCE

Measure Combined Resistance

sERIES CIRCUIT RESISTANCE

Measure Individual Resistance

sERIES CIRCUIT RESISTANCE

Measure Individual Resistance

LAB QUESTION?

How do we measure the total Voltage in our series circuit?

What about the voltage across the individual resisters?

Series circuit voltage

SERIES CIRCuIt VOLTAGE

Measure Individual Voltage

SERIES CIRCUIT VOLTAGE

LAB QUESTION?

How do we measure the total Current in our series circuit?

What about the voltage through the individual resisters?

SERIES CIRCUIT CURRENT

LAB \#1 SERIES CIRCUIT

fritzing

Create table and make the measurements

SERIES CIRCUIT

- Open your log books
- On the next available Page
- Note the Date
- Draw a table ("for a fixed 5 volt power supply")

	Measured Resistance	Measured Voltage	Measured Current
R1 + R2 (measure together)			x
R1			x
R2			x
I (for circuit)	x	x	

SHEAM CLOWKrm PRODUCWOK

MATH BEHIND THE MEASUREMENTS

SERIES CIRCUITS

STEAM CLOWN"M
d Squalky-finge PRODUCTIONS
© Copyright 2017 STEAM Clown™

CALCULATING SERIES RESISTANCE

220Ω

$$
R_{t}=R_{1}+R_{2}+R_{3}+\text { etc. }
$$

To find the total resistance of a series circuit, just add the values of the individual resistors together

sERIES CIRCUIT RESISTANCE

$R_{t}=R_{1}+R_{2}+R_{3}+$ etc.
$R 1 R_{1}=330 \Omega, R_{2}=330 \Omega R_{t}=$

$$
\begin{array}{ll}
\mathrm{R}_{1}=330 \Omega, & \mathrm{R}_{2}=680 \Omega \mathrm{R}_{\mathrm{t}}= \\
\mathrm{R}_{1}=1 \mathrm{~K} \Omega, & \mathrm{R}_{2}=2 \mathrm{~K} \Omega \mathrm{R}_{\mathrm{t}}= \\
\mathrm{R}_{1}=680 \Omega, & \mathrm{R}_{2}=1 \mathrm{~K} \Omega \mathrm{R}_{\mathrm{t}}=
\end{array}
$$

Calculate R_{t}

LAB \#2 SERIES CIRCUIT

$$
\begin{aligned}
& R_{1}=330 \Omega, R_{2}=680 \Omega \\
& R_{1}=1 \mathrm{~K} \Omega, \quad R_{2}=2 \mathrm{~K} \Omega \\
& R_{1}=680 \Omega, R_{2}=1 \mathrm{~K} \Omega
\end{aligned}
$$

Create 3 more tables like lab \#1, and make the same measurements

SHEAM CLOWKrm PRODUCWOK

MATH BEHIND THE MEASUREMENTS

CAN WE CALCULATE THE VOLTAGE ON A RESISTOR IN A SERIES CIRCUIT?

- How does the "battery" "see" the combination of the 2 resistors?
- How do the Resistors "see" the "battery"?
- Nether Resistor is connected directly across the "battery"
- How much voltage is applied to each Resistor?

> Series Resistors share or Divide the applied voltage

VOLTAGE DIVISION WITH RESISTORS

Where:
$R_{t}=$ Total Resistance of series string
$R_{x}=$ Resistor for which we are calculating the voltage drop
V = Applied voltage
$\mathrm{V}_{\mathrm{x}}=$ Voltage drop across R_{x}

LETS DO SOME CALCULATIONS

$$
\begin{aligned}
& \mathrm{R}_{1}=330 \Omega, \mathrm{R}_{2}=680 \Omega, \mathrm{~V}=5 \mathrm{v} \\
& R_{t}=1.01 \mathrm{~K} \Omega \quad R_{x}=330 \Omega \\
& V_{x}=\mathrm{B}\left(\frac{R 330 \Omega}{R_{t}} 01 \mathrm{~K} \Omega\right. \\
& V_{x}=1.63 \mathrm{~V}
\end{aligned}
$$

$$
V_{x}=V\left(\frac{R_{x}}{R_{t}}\right)
$$

steam clown'w d Squeaky-finge PRODUCTIONS © Copyright 2017 STEAM Clown ${ }^{\text {TM }}$

LETS DO SOME CALCULATIONS

$$
\begin{gathered}
\mathrm{R}_{1}=330 \Omega, \mathrm{R}_{2}=680 \Omega, \mathrm{~V}=5 \mathrm{v} \\
R_{t}=1.01 \mathrm{~K} \Omega \quad R_{x}=680 \Omega \\
V_{x}=\mathbb{W}\left(\frac{R 680 \Omega}{R_{t} 01 K \Omega}\right) \\
V_{x}=3.37 \mathrm{~V}
\end{gathered}
$$

$$
V_{x}=V\left(\frac{R_{x}}{R_{t}}\right)
$$

LAB \#3 SERIES CIRCUIT

$$
\begin{aligned}
& R_{1}=330 \Omega, R_{2}=330 \Omega \\
& R_{1}=330 \Omega, R_{2}=680 \Omega \\
& R_{1}=1 \mathrm{~K} \Omega, \quad R_{2}=2 \mathrm{~K} \Omega \\
& R_{1}=680 \Omega, R_{2}=1 \mathrm{~K} \Omega
\end{aligned}
$$

$$
V_{x}=V\left(\frac{R_{x}}{R_{t}}\right)
$$

Using the data from your 4 tables, calculate the voltage over R1 and R2. Verify that your measurements are correct.

VARIABLE RESISTORS

- Resistor that has the ability to change resistance manually
- Resistor that have it's resistance change do to environmental effects

Potentiometer

Photoresistor

SERIES CIRCuIt VOLTAGE

SERIES CIRCuIt VOLTAGE

SERIES CIRCUIT VOLTAGE

Measure Variable Voltage

VARIABLE RESISTOR LAB

- Turn the Potentiometer to have equal resistance on both sides
- ie: for a $10 \mathrm{~K} \Omega$ Potentiometer each segment should be about $5 \mathrm{~K} \Omega$
- Measure:
- The resistance of each side,
- then connect power, and measure the voltage

SERIES CIRCuIt VOLTAGE

SHEAM CLOWKrm PRODUCWOK

MATH BEHIND THE MEASUREMENTS

HOW DO YOU FIND THE RESISTANCE GIVEN A KNOWN VOLTAGE DIVIDER?

- We know that you can find V_{x} When you know R_{x}
- How do we manipulate to solve for R_{x} ?

$$
V_{x}=V\left(\frac{R_{x}}{R_{t}}\right)
$$

MANIPULATE TO SOLVE FOR R $\mathbf{R}_{\mathbf{x}}$

MANIPULATE TO SOLVE FOR R \mathbf{R}_{x}

MANIPULATE TO SOLVE FOR \mathbf{R}_{x}

$$
\begin{aligned}
& R_{t} * V x=V(R x) \\
& R_{t} * V x=V R x
\end{aligned}
$$

MANIPULATE TO SOLVE FOR R $\mathbf{R}_{\mathbf{x}}$

MANIPULATE TO SOLVE FOR R $\mathbf{R}_{\mathbf{x}}$

MANIPULATE TO SOLVE FOR R $\mathbf{R}_{\mathbf{x}}$

$$
R_{x}=\frac{R_{t} * V x}{V}
$$

MANIPULATE TO SOLVE FOR R R_{x}

LETS DO SOME CALCULATIONS

$$
\begin{aligned}
& \mathrm{R}_{1}=5.24 \mathrm{~K} \Omega, \mathrm{R}_{2}=10 \mathrm{~K} \Omega, \mathrm{~V}=5 \mathrm{v} \\
& R_{t}=15.24 \mathrm{~K} \Omega \quad R_{x}=5.24 \mathrm{~K} \Omega \\
& V_{x}=\mathbb{B}\left(\frac{R 5.24 \mathrm{~K} \Omega}{R_{t} 5.24 \mathrm{~K} \Omega}\right) \\
& V_{x}=1.719 \mathrm{~V}
\end{aligned}
$$

$$
V_{x}=V\left(\frac{R_{x}}{R_{t}}\right)
$$

steam clown'w d Sacaityerange PRODUCTIONS © Copyright 2017 STEAM Clown ${ }^{\text {TM }}$

LETS DO SOME CALCULATIONS

$$
R_{x}=\frac{R_{t} * V x}{V}
$$

$$
\begin{gathered}
\mathrm{R}_{1}=? \Omega, \mathrm{R}_{2}=10 \mathrm{~K} \Omega, \mathrm{~V}=5 \mathrm{v} \\
R_{t}=15.24 \mathrm{~K} \Omega V_{x}=1.719 \mathrm{~V} \\
R_{x}=\frac{15.24 \mathrm{KR} Q_{2} * \mathbb{Z} \neq 19 \mathrm{~V}}{5 V} \\
R_{x}=5.24 \mathrm{~K} \Omega
\end{gathered}
$$

STEAM CLOWN"M d Squalky-finge PRODUCTIONS
© Copyright 2017 STEAM ClownTM

VARIABLE RESISTOR LAB

- Build the circuit with the variable R_{p} and fixed R_{2}
- Turn the Potentiometer and measure the Voltage
- Using this formula calculate R_{p}

$$
R_{x}=\frac{R_{t} * V x}{V}
$$

SHEAM CLOWK™ PRODUCTOK

REFERENCE

d Squeakysfinge

WORK SHEET - LAB / QUIZ

- Objectives
- Demonstrate knowledge of Ohms Law
- Demonstrate proper use of a Digital Multi Meter
- Demonstrate knowledge of Series Circuits fundamentals
- Apply the Voltage divider principles
- Equipment needed
- 5 volt DC power supply and bread board adaptor
- DMM
- Bread board
- Assorted resistors and wires

LETS DO SOME CALCULATIONS

$$
\begin{aligned}
& \mathrm{R}_{1}=330 \Omega, \mathrm{R}_{2}=680 \Omega, \mathrm{~V}= \\
& R_{t}=330 \Omega+680 \Omega \\
& R_{t}=1010 \Omega \quad R_{t}=1.01 \mathrm{~K} \Omega \\
& V_{x}=V\left(\frac{R_{x}}{R_{t}}\right)
\end{aligned}
$$

$$
V_{x}=V\left(\frac{R_{x}}{R_{t}}\right)
$$

sERIES CIRCUIT RESISTANCE

$R_{t}=R_{1}+R_{2}+R_{3}+$ etc.
$R 1 R_{1}=330 \Omega, R_{2}=330 \Omega R_{t}=$

$$
\begin{array}{ll}
\mathrm{R}_{1}=330 \Omega, & \mathrm{R}_{2}=680 \Omega \mathrm{R}_{\mathrm{t}}= \\
\mathrm{R}_{1}=1 \mathrm{~K} \Omega, & \mathrm{R}_{2}=2 \mathrm{~K} \Omega \\
\mathrm{R}_{\mathrm{t}}= \\
\mathrm{R}_{1}=6800 \Omega, & \mathrm{R}_{2}=1 \mathrm{~K} \Omega \\
\mathrm{R}_{\mathrm{t}}=
\end{array}
$$

R2

Calculate R_{t}

SERIES CIRCUIT

fritzing

SERIES CIRCUIT

MEASURING VOLTAGE

- Set the DMM to Ω (to measure Resistance)
- Set it to the closest value above the target resi you are measuring

MEASURING CURRENT

- Set the DMM to Amps (to measure Current)
- Set it to the closest value above the target current you expect to measu

- Break the circuit, so the

SERIES CIRCUIT

This is how we measure Amps in a circuit

ELECTRONIC SYMBOLS

SOURCES

- 30 years of electronics in my head...
- Electronic Projects for Photographers
- https://www.youtube.com/watch?v=Hck8k6ALBV8
- https://www.youtube.com/watch?v=2d8CUQokims
- https://adamcap.com/schoolwork/series-and-parallel-circuits-lab/ \leftarrow add some of the hypothesis and Questions to the labs
- http://www.thephysicsaviary.com/Physics/Programs/Labs/SeriesCircui tLab/index.html <-- maybe add a lab to prove current is the same...
- http://www.freeclassnotesonline.com/Series-Circuits-Lab.php <-good lab work sheet... add to presentation

