PYTHON LISTS

Chapter 8 Python for Everybody

A Python class for my Mechatronics Engineering @ SVCTE. Last Updated for 2017 — 2018
school year

Page 1

http://www.py4e.com/

OVERVIEW & INTRODUCTION

STEAM CLOWN™
L WSqueakyHinge
PRODUCTIONS

Page 2 © Copyright 2018 STEAM Clown™

>§,\”

2~

Q
K>
4"(,_0\1\\ These slides are an adaption, to better target my
SVCTE High School Mechatronics Engineering class,

primarily from Dr. Charles R. Severance’s Python for
Everybody class ... but

from other sources as well. See Appendix A

SEE APPENDIX A, FOR LICENSING & ATTRIBUTION INFORMATION

by-nc-sa-3.0

STEAM CLOWN™

. S queaky,Hinge,
PRODUCTIONS

© Copyright 2018 STEAM Clown™

Page 3

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/faq/#what-does-some-rights-reserved-mean
https://www.py4e.com/

Page 4

Python Lists
Chapter 8

Python for Everybody
www.py4e.com

RESOURCES & MATERIALS NEEDED

e Students should use interactive notebooks to take
notes

*Link to PDF presentation for Chapter 8 — Python Lists

* Students should have access to a Raspberry Pi or PC to
run and execute Python code

cae,. STEAM CLOWN™

Page 5

CCCCCCCCCCCCCCCCCCCCCCCCC

WHAT YOU WILL KNOW...

* Prior Knowledge

How to open and run Python on a Raspberry Pi or other device

~amiliarity with Python constructs like if, elif, else, while, for
00ps

Debugging skills to break down a python coding challenge

* What You Will Know & Be Able To Do
e Use your Debugging skill to construct a top down flowchart to

describe the python coding challenge

* Impalement Python code to solve the coding challenge
e Describe to classmates how you solved the coding challenge

Page 6

HOW WILL YOU BE MEASURED

*|ndividual Students will submit working code to be
graded

*Students teams may present diagram of Top Down
design flow chart, and this will be graded

* Students teams may present orally how they solved

the coding challenge, and depth of understanding will
be graded

Page 8

NEW WORDS...

* Algorithm
* Data Structure
 Mutable

&, STEAMCLOWN™

Page 10

CCCCCCCCCCCCCCCCCCCCCCCCC

Programming

e Algorithm
- A set of rules or steps used to solve a problem

e Data Structure
- A particular way of organizing data in a computer

Page 11

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data_structure

What Is Not a “"Collection”?

Most of our variables have one value in them - when we put a new
value in the variable, the old value is overwritten

$ python
>>> x = 2
>>> x = 4

>>> print (x)
4

Page 12

A List Is a Kind of Collection

e A allows us to put many values in a single “variable”

e A IS nice because we can carry all many values
around in one convenient package.

friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

Page 13

Page 14

List Constants

e List constants are surrounded by
sguare brackets and the elements

In the list are separated by
commas

e Alist element can be any Python

object - even another list

e Alist can be empty

>>> print ([1, 24, 761])

(1, 24, 76]

>>> print (['red', 'yellow',
'blue'])

['red', 'yellow', 'blue']
>>> print (['red', 24, 98.6])
['red', 24, 98.06]

>>> print ([1, [5, 6], 7])
(1, [5, o], 7]

>>> print ([])

[]

l!'l" STRY OUT SOME CODE...

B - /myPython

STEAM-Clown@STEAM-Clown-PC
$ cd mypPython

STEAM-Clown@STEAM-Clown-PC

$ python3

Python 3.4.5 (default, oct 10 2016, 14:41:48)
[GCC 5.4.0] on cygwin

Type "help", "copyright"”, "credits"” or "license"

information.
>>> print([1,2,3,9,8,71)
[1, 2, 3, 9, 8, 7]
>>> print(['zero','one’', 'two', "three'])
["zero', 'one', '"two', 'three']
>> X = ["zero', 1, "two', 3]
>>> print(x)
['zero',
>>>

for more

STEAM CLOWN™
& CEM '@Ai‘tﬁ}:t
PRODUCTIONS

© Copyright 2018 STEAM Clown™

We Already Use Lists!

for 1 i1n [5, 4, 3, 2, 1] :
print (1)
print ('Blastoff! ")

O~ N W O

lastoff!

Page 16

Lists and Definite Loops - Best Pals

friends = ['Joseph', 'Glenn', 'Sally']
for friend in friends : . Happy New Year: Joseph
prlnt ('Happy New Year:' 7 frlend) Happy NeW Year Glenn

print ('Done! ")
) Happy New Year: Sally
Done!

z = ['"Joseph', 'Glenn', 'Sally']
for x in z:

print ('Happy New Year:', x)
print ('Done! ")

Page 17

Looking Inside Lists

Just like strings, we can get at any single element in a list using an
Index specified In square brackets

>>> friends = ['Joseph', 'Glenn', 'Sally']
JOseph Glenn Sa”y >>> print (friends[1])

Glenn

0 1 2 >>>

Page 18

LET'CTRY ALY ¢AMEF SARF

~ /myPython

STEAM-Clown@STEAM-Clown-PC
$ python3

Python 3.4.5 (default, oct 10 2016, 14:41:48)
[GCC 5.4.0] on cygwin

Type "help"”, "copyright", "credits" or "license
information.

}}} Z [IIBObII‘ I'I'Bob S Brotherll I'Sa-l-lyl' I'I'Suel'l']
>>> for x 1n z:

print('hello’,x)
Héi10 Bob
hello Bob's Brother

hello Sally
hello Sue

>>>

for more

For more

Page 20

Lists are Mutable

>>> frult = 'Banana'

e Strings are “immutable” - we

cannot change the contents of a
string - we must make a
to make any change

Lists are “mutable” - we can
an element of a list using
the index operator

>>> frult[0]
Traceback
TypeError:

'str'

= 'p!

object does not

support 1tem assignment

>>> x = frult
>>> print (x)
banana

>>> lotto = [2,

()

14, 26, 41, 63]

>>> print (lotto)

[21
>>2>
>>2>

[21

14, 26, 41, 63]
lotto[2] = 28
print (lotto)
14, , 41, 63]

L sl T

IETETFRY ALY CAMEF FARF

e e s W
' ~ /myPython | == |ﬂh‘ *é-r-l.
>>> i Hﬂlﬁ*ﬂf
>>> L
>>> =
>>> =
>>>

>>>

>>> fruit="'Banana'
>>> print(fruit[2])

n

>>> print(fruit[0])
B

>>> fruit[0] = "Y'

Traceback (most recent call last):
File "<stdin>", 1ine 1, 1n <module>
TypeError: 'str' object does not support i1tem assignment
>>> X=fruit.lower()
>>> print(x)
banana
>>> -
L 1A T TN 1T 118 L ST I1TI11NN>>= I 1113 I 1T <MDyl 1 &> -

m

Page =

LET'CTRY ALY ¢AMEF SARF

=y
e |

~ /myPython

l:ﬂzh&d

STEAM-Clown@STEAM-Clown-PC

$ python3

Python 3.4.5 (default, oct 10 2016, 14:41:48)
[GCC 5.4.0] on cygwin

Type "help"”, "copyright", "credits" or "license
information.

>>> lotto=[17,2,45,21,66]

>>> print(10tto)

[17, 2, 45, 21, 66]

>>> lotto[2]=55

>>> print(lotto)

[17, 2, 55, 21, 66]

>>>

for more

e e |
e e |
e e |

-+
L

==n X

OI" more

LET'S TRY OUT SOME CODE...

PPPPPP

How Long is a List?

e The function takes a list as a >>> greet = 'Hello Bob'
parameter and returns the number >>> print ((greet))
of elements in the list 2
>>> x = [1, 2, "jJoe', 99]
e Actually tells us the number of Z» prant|)
elements of any set or sequence >

(such as a string...)

Page 24

Using the range Function

e The range function returns

' int 4
a list of numbers that range .~ oot lonon)

[0, 1, 2, 3]
from zero to one less than >>> friends = ['Joseph', 'Glenn', 'Sally']
the parameter >>> print (len(friends))
3
>>> print (range(len(friends)))
e We can construct an index >[2> Ly 2]

loop using for and an
Integer iterator

Page 25

A Tale of Two Loops...

>>> friends = ['Joseph', 'Glenn', 'Sally']
friends = ['Joseph', 'Glenn', 'Sally'] >>> print(len(friends))
3
for friend in friends : >>> print (range(len(friends)))
print ('Happy New Year:', friend) (0, 1, 2]
>>>
for 1 in range(len(friends))
friend = friends|[i]
print ('Happy New Year:', friend) Happy NEVWYAGCY: S Jgseph

Happy New Year: Glenn
Happy New Year: Sally

Page 26

Concatenating Lists Using +

>>> a = [1, 2, 3]
We can create a new list >>> Db = [4, 5, 6]
by adding two existing >>> ¢ =a+b
lists together >>> print(c)

(1, 2, 3, 4, 5, 6]

>>> print (a)

(1, 2, 3]

Page 27

Lists Can Be Sliced Using :

>>> t = [9, 41, 12, 3, 74, 15]

>>> t[1:3] L
141,121 Remember: Just like In
>>> t[:4] strings, the second

9, 41, 12, 3] number is “up to but not
>>> thes] including”

[3, 74, 15]

>>> t[:]

(9, 41, 12, 3, 74, 15]

Page 28

List Methods

>>> x = ()
>>> (%)
<type 'list'>
>>> (%)

['append', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']
>>>

Page 29

http://docs.python.org/tutorial/datastructures.html

Building a List from Scratch

_ >>> stuff = ()
e We can create an empty list

| >>> stuff ('book')
and then add elements using S>> styuff (99)
the method >>> print (stuff)
['"book', 99]
e The list stays in order and >>> stuff (Tcookie')

>>> print (stuff)

new elements are at
['book', 99, 'cookie']

the end of the list

Page 30

Is Something In a List?

e Python provides two operators >>> some = [1, 9, 21, 10, 16]
that let you check if an item is >>> 2 1n some
In a list .
>>> 15 1n some
_ False
e These are logical operators >>> 20 not in some
that return or
>>>

e They do not modify the list

Page 31

Lists are in Order

e Alist can hold many
items and keeps those

items in the order until ... ¢ i .00 = | sosepnt, tclenn', sallyl |
we do something to >>> friends ()
change the order >>> print (friends)
['Glenn', 'Joseph', 'Sally']
e Alist can be >>> print (friends[1])

_] Joseph
(l.e., change its order) oss °

e The method
(unlike In strings)
means “

7

Page 32

Bullt-in Functions and Lists

>>> nums = [3, 41, 12, 9, 74, 15]
e There are a number of >>> print ((nums))
built into Python 6
that take lists as >>> print ((nums))
parameters 74
>>> print ((nums))
3
* Remember the loops we >>> print (sum (nums))
built? These are much 154
simpler. >>> print ((nums) / (nums))

25.6

Page 33

Page 34

total = 0

count = 0

while True :
inp = 1nput ('Enter a number:
1f inp == 'done' : break
value = float (inp)
total = total + value
count = count + 1

average = total / count

print ('Average:', average)

Enter a number: 3
Enter a number: 9
') Enter a number: 5
Enter a number: done
Average: 5.66666666667

numlist = list ()

while True :
inp = 1nput('Enter a number: ')
1f inp == 'done' : break
value = float (inp)

numlist.append (value)

average = sum(numlist) / len (numlist)
print ('Average:', average)

Best Friends: Strings and Lists

>>> abc = 'With three words' >>> print (stuff)
>>> stuff = abc () ['With', 'three', 'words']
>>> print (stuff) >>> for w 1n stuff
['With', 'three', 'words'] .. print (w)
>>> print ((stuff)) c ..
3 With
>>> print (stuff[0]) Three
With Words
>>>

breaks a string into parts and produces a list of strings. We think of these
as words. We can access a particular word or loop through all the words.

Page 35

Page 36

>>> Jline = 'A lot

>>> etc = line. ()

>>> print (etc)

['A', '"lot', 'of', 'spaces']
>>>

>>> line = 'first;second;third’

>>> thing = line ()
>>> print (thing)

['first;second;third']

>>> print ((thing))
1
>>> thing = line ('";")

>>> print (thing)

['first', 'second', 'third']
>>> print ((thing))

3

>>>

of spaces'

e \When you do not specify a
delimiter, multiple spaces are

treated like one delimiter

e You can specify what delimiter

character to use in the

From stephen.marquard@uct.ac.za

Jan 509:14:16 2008

fhand = ('mbox-short.txt')
for line in fhand:
line = line ()
if not line
words = line ()
print (words[2])

('"From ')

continue

>>> line =
>>> words = line ()

>>> print (words)

['From', 'stephen.marquard@uct.ac.za',
>>>

Page 37

'"From stephen.marquardluct.ac.za Sat Jan

5 09:14:16 2008"

'Sat', 'Jan', '5', '09:14:10",

'2008"]

The Double Split Pattern

Sometimes we split a line one way, and then grab one of the pieces
of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()
= words|[1]

Page 38

The Double Split Pattern

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split/()
emall = words|[1l] stephen.marquard@uct.ac.za

Page 39

The Double Split Pattern

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split ()
emall = words([1]
pieces = emall.split('@") ['stephen.marquard', 'uct.ac.za']

stephen.marquard@uct.ac.za

Page 40

The Double Split Pattern

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split/()
emall = words|[1l]
pieces = email.split('@") ['stephen.marquard', 'uct.ac.za']
print (pieces[1]) 'uet . ac. za!

stephen.marquard@uct.ac.za

Page 41

List Summary

e Concept of a collection e Slicing lists

e Lists and definite loops e List methods: append, remove

e |[ndexing and lookup e Sorting lists

e List mutability e Splitting strings into lists of words

e Functions: len, min, max, sum e Using split to parse strings

Page 42

Page 43

Acknowledgements / Contributions

These slides are Copyright 2010- Charles R. Severance (

) of the University of Michigan School of Information and

and made available under a Creative Commons

Attribution 4.0 License. Please maintain this last slide in all copies of
the document to comply with the attribution requirements of the
license. If you make a change, feel free to add your name and
organization to the list of contributors on this page as you republish
the materials.

Initial Development: Charles Severance, University of Michigan School
of Information

... Insert new Contributors and Translators here

http://www.dr-chuck.com/
http://open.umich.edu/

STEAM CLOWN™

L QSqueaky,Hinge
PRODUCTIONS

Page 44 © Copyright 2018 STEAM Clown™

ASSESSMENT

Page 45

Assessment Type(s):

v'Demonstrations
v'Interviews
v'Journals
v'Observations
v'Labs

v'Projects
v'Portfolios
v'Rubrics
v'Surveys
v'Teacher-Made Test
v Writing Samples

STEAM CLOWN™
QS queaky,Hinge
PRODUCTIONS

© Copyright 2018 STEAM Clown™

___/_‘

/F“”)

q

\(
v
o,
&
4”([0\“

REFERENCE SLIDES

STEAM CLOWN™

F SSqueakyHinge
PRODUCTIONS

Page 46 © Copyright 2018 STEAM Clown™

LEARNING DOMAIN, CTE STANDARDS AND STUFF LIKE THAT...

* Learning Domain Standards
[] cognitive [] affective[] psychomotor CTE
* What are some cognitive skills required for success e CCSS
in your pathway?
* What are some affective skills required for success in * NCSS

your pathway?

* What are some psychomotor skills required for
success in your pathway?

e Time:
* Lecture
e Lab

STEAM CLOWN™
PRODUCTIONS

Page 47 © Copyright 2018 STEAM Clown™

STEAM CLOWN™

L QSqueaky,Hinge
PRODUCTIONS

Page 48 © Copyright 2018 STEAM Clown™

PPPPPP

Page 51

This interpretation is primarily

the |

ntellectual Property of

Jim Burnham, Top STEAM
Clown, at STEAMClown.org

This presentation and content

is distributed under the

Crea

tive Commons License

CC-by-nc-sa-3.0
My best attempt to properly

attri

oute, or reference any

other sources or work | have

usec

are listed in Appendix B

Under the following terms:

Attribution — You must give appropriate credit, provide a
link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for

ShareAlike — If you remix, transform, or build upon the
material, you must distribute your contributions under the
same license as the original.

No additional restrictions — You may not apply legal terms
or technological measures that legally restrict others from
doing anything the license permits.

STEAM CLOWN™

F SSqueakyHinge
PRODUCTIONS

© Copyright 2018 STEAM Clown™

https://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.steamclown.org/

APPENDIX B: ATTRIBUTION FOR SOURCES USED

STEAM CLOWN™
X PWSqueaky.Hinge
PRODUCTIONS

Page 52 © Copyright 2018 STEAM Clown™

