
Page 1

STEAM Clown™ Productions

Python Lists
Chapter 8 Python for Everybody

www.py4e.com

A Python class for my Mechatronics Engineering @ SVCTE. Last Updated for 2017 – 2018
school year

http://www.py4e.com/

Page 2

Overview & Introduction

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 3

STEAM Clown™ Productions

See Appendix A, for Licensing & Attribution information
by-nc-sa-3.0

https://creativecommons.org/licenses/by-nc-sa/3.0/

https://creativecommons.org/faq/#what-does-some-rights-reserved-mean

These slides are an adaption, to better target my
SVCTE High School Mechatronics Engineering class,
primarily from Dr. Charles R. Severance’s Python for
Everybody class https://www.py4e.com/ … but
from other sources as well. See Appendix A

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/faq/#what-does-some-rights-reserved-mean
https://www.py4e.com/

Page 4

Python Lists
Chapter 8

Python for Everybody

www.py4e.com

Page 5

•Students should use interactive notebooks to take
notes

•Link to PDF presentation for Chapter 8 – Python Lists

•Students should have access to a Raspberry Pi or PC to
run and execute Python code

Resources & Materials Needed

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 6

• Prior Knowledge
• How to open and run Python on a Raspberry Pi or other device
• Familiarity with Python constructs like if, elif, else, while, for

loops
• Debugging skills to break down a python coding challenge

• What You Will Know & Be Able To Do
• Use your Debugging skill to construct a top down flowchart to

describe the python coding challenge
• Impalement Python code to solve the coding challenge
• Describe to classmates how you solved the coding challenge

What You Will Know…

Page 8

• Individual Students will submit working code to be
graded

•Students teams may present diagram of Top Down
design flow chart, and this will be graded

•Students teams may present orally how they solved
the coding challenge, and depth of understanding will
be graded

How Will You Be Measured

Page 10

•Algorithm

•Data Structure

•Mutable

New Words…

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 11

Programming

• Algorithm

- A set of rules or steps used to solve a problem

• Data Structure

- A particular way of organizing data in a computer

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data_structure

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data_structure

Page 12

What is Not a “Collection”?

Most of our variables have one value in them - when we put a new

value in the variable, the old value is overwritten

$ python

>>> x = 2

>>> x = 4

>>> print(x)

4

Page 13

A List is a Kind of Collection

• A collection allows us to put many values in a single “variable”

• A collection is nice because we can carry all many values

around in one convenient package.

friends = ['Joseph', 'Glenn', 'Sally']

carryon = ['socks', 'shirt', 'perfume']

Page 14

List Constants

• List constants are surrounded by

square brackets and the elements

in the list are separated by

commas

• A list element can be any Python

object - even another list

• A list can be empty

>>> print([1, 24, 76])

[1, 24, 76]

>>> print(['red', 'yellow',

'blue'])

['red', 'yellow', 'blue']

>>> print(['red', 24, 98.6])

['red', 24, 98.6]

>>> print([1, [5, 6], 7])

[1, [5, 6], 7]

>>> print([])

[]

Page 15 © Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Let’s try out some code…

Page 16

We Already Use Lists!

for i in [5, 4, 3, 2, 1] :

print(i)

print('Blastoff!')

5

4

3

2

1

Blastoff!

Page 17

Lists and Definite Loops - Best Pals

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :

print('Happy New Year:', friend)

print('Done!')

Happy New Year: Joseph

Happy New Year: Glenn

Happy New Year: Sally

Done!

z = ['Joseph', 'Glenn', 'Sally']

for x in z:

print('Happy New Year:', x)

print('Done!')

Page 18

Looking Inside Lists

Just like strings, we can get at any single element in a list using an

index specified in square brackets

0

Joseph
>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> print(friends[1])

Glenn

>>> 1

Glenn

2

Sally

Page 19

Let’s try out some code…

Page 20

Lists are Mutable

• Strings are “immutable” - we

cannot change the contents of a

string - we must make a new string

to make any change

• Lists are “mutable” - we can
change an element of a list using
the index operator

>>> fruit = 'Banana'

>>> fruit[0] = 'b'

Traceback

TypeError: 'str' object does not

support item assignment

>>> x = fruit.lower()

>>> print(x)

banana

>>> lotto = [2, 14, 26, 41, 63]

>>> print(lotto)

[2, 14, 26, 41, 63]

>>> lotto[2] = 28

>>> print(lotto)

[2, 14, 28, 41, 63]

Page 21

Let’s try out some code…

Page 22

Let’s try out some code…

Page 23

Let’s try out some code…

Page 24

How Long is a List?

• The len() function takes a list as a

parameter and returns the number

of elements in the list

• Actually len() tells us the number of

elements of any set or sequence

(such as a string...)

>>> greet = 'Hello Bob'

>>> print(len(greet))

9

>>> x = [1, 2, 'joe', 99]

>>> print(len(x))

4

>>>

Page 25

Using the range Function

• The range function returns

a list of numbers that range

from zero to one less than

the parameter

• We can construct an index

loop using for and an

integer iterator

>>> print(range(4))

[0, 1, 2, 3]

>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> print(len(friends))

3

>>> print(range(len(friends)))

[0, 1, 2]

>>>

Page 26

A Tale of Two Loops...

friends = ['Joseph', 'Glenn', 'Sally']

for friend in friends :

print('Happy New Year:', friend)

for i in range(len(friends)) :

friend = friends[i]

print('Happy New Year:', friend) Happy New Year: Joseph

Happy New Year: Glenn

Happy New Year: Sally

>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> print(len(friends))

3

>>> print(range(len(friends)))

[0, 1, 2]

>>>

Page 27

Concatenating Lists Using +

We can create a new list

by adding two existing

lists together

>>> a = [1, 2, 3]

>>> b = [4, 5, 6]

>>> c = a + b

>>> print(c)

[1, 2, 3, 4, 5, 6]

>>> print(a)

[1, 2, 3]

Page 28

Lists Can Be Sliced Using :

>>> t = [9, 41, 12, 3, 74, 15]

>>> t[1:3]

[41,12]

>>> t[:4]

[9, 41, 12, 3]

>>> t[3:]

[3, 74, 15]

>>> t[:]

[9, 41, 12, 3, 74, 15]

Remember: Just like in

strings, the second

number is “up to but not

including”

Page 29

List Methods

>>> x = list()

>>> type(x)

<type 'list'>

>>> dir(x)

['append', 'count', 'extend', 'index', 'insert',

'pop', 'remove', 'reverse', 'sort']

>>>

http://docs.python.org/tutorial/datastructures.html

http://docs.python.org/tutorial/datastructures.html

Page 30

Building a List from Scratch

• We can create an empty list

and then add elements using

the append method

• The list stays in order and

new elements are added at

the end of the list

>>> stuff = list()

>>> stuff.append('book')

>>> stuff.append(99)

>>> print(stuff)

['book', 99]

>>> stuff.append('cookie')

>>> print(stuff)

['book', 99, 'cookie']

Page 31

Is Something in a List?

• Python provides two operators

that let you check if an item is

in a list

• These are logical operators

that return True or False

• They do not modify the list

>>> some = [1, 9, 21, 10, 16]

>>> 9 in some

True

>>> 15 in some

False

>>> 20 not in some

True

>>>

Page 32

Lists are in Order

• A list can hold many

items and keeps those

items in the order until

we do something to

change the order

• A list can be sorted

(i.e., change its order)

• The sort method

(unlike in strings)

means “sort yourself”

>>> friends = ['Joseph', 'Glenn', 'Sally']

>>> friends.sort()

>>> print(friends)

['Glenn', 'Joseph', 'Sally']

>>> print(friends[1])

Joseph

>>>

Page 33

Built-in Functions and Lists

• There are a number of

functions built into Python

that take lists as

parameters

• Remember the loops we

built? These are much

simpler.

>>> nums = [3, 41, 12, 9, 74, 15]

>>> print(len(nums))

6

>>> print(max(nums))

74

>>> print(min(nums))

3

>>> print(sum(nums))

154

>>> print(sum(nums)/len(nums))

25.6

Page 34

numlist = list()

while True :

inp = input('Enter a number: ')

if inp == 'done' : break

value = float(inp)

numlist.append(value)

average = sum(numlist) / len(numlist)

print('Average:', average)

total = 0

count = 0

while True :

inp = input('Enter a number: ')

if inp == 'done' : break

value = float(inp)

total = total + value

count = count + 1

average = total / count

print('Average:', average)

Enter a number: 3

Enter a number: 9

Enter a number: 5

Enter a number: done

Average: 5.66666666667

Page 35

Best Friends: Strings and Lists

>>> abc = 'With three words'

>>> stuff = abc.split()

>>> print(stuff)

['With', 'three', 'words']

>>> print(len(stuff))

3

>>> print(stuff[0])

With

>>> print(stuff)

['With', 'three', 'words']

>>> for w in stuff :

... print(w)

...

With

Three

Words

>>>

Split breaks a string into parts and produces a list of strings. We think of these

as words. We can access a particular word or loop through all the words.

Page 36

>>> line = 'A lot of spaces'

>>> etc = line.split()

>>> print(etc)

['A', 'lot', 'of', 'spaces']

>>>

>>> line = 'first;second;third'

>>> thing = line.split()

>>> print(thing)

['first;second;third']

>>> print(len(thing))

1

>>> thing = line.split(';')

>>> print(thing)

['first', 'second', 'third']

>>> print(len(thing))

3

>>>

● When you do not specify a

delimiter, multiple spaces are

treated like one delimiter

● You can specify what delimiter

character to use in the splitting

Page 37

fhand = open('mbox-short.txt')

for line in fhand:

line = line.rstrip()

if not line.startswith('From ') : continue

words = line.split()

print(words[2])

Sat

Fri

Fri

Fri

...

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

>>> line = 'From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008'

>>> words = line.split()

>>> print(words)

['From', 'stephen.marquard@uct.ac.za', 'Sat', 'Jan', '5', '09:14:16', '2008']

>>>

Page 38

The Double Split Pattern

Sometimes we split a line one way, and then grab one of the pieces

of the line and split that piece again

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()

email = words[1]

print pieces[1]

Page 39

The Double Split Pattern

stephen.marquard@uct.ac.za

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()

email = words[1]

print pieces[1]

Page 40

The Double Split Pattern

['stephen.marquard', 'uct.ac.za']

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()

email = words[1]

pieces = email.split('@')

print pieces[1]

stephen.marquard@uct.ac.za

Page 41

The Double Split Pattern

['stephen.marquard', 'uct.ac.za']

From stephen.marquard@uct.ac.za Sat Jan 5 09:14:16 2008

words = line.split()

email = words[1]

pieces = email.split('@')

print(pieces[1])

stephen.marquard@uct.ac.za

'uct.ac.za'

Page 42

List Summary

• Concept of a collection

• Lists and definite loops

• Indexing and lookup

• List mutability

• Functions: len, min, max, sum

• Slicing lists

• List methods: append, remove

• Sorting lists

• Splitting strings into lists of words

• Using split to parse strings

Page 43

Acknowledgements / Contributions

These slides are Copyright 2010- Charles R. Severance (www.dr-
chuck.com) of the University of Michigan School of Information and
open.umich.edu and made available under a Creative Commons
Attribution 4.0 License. Please maintain this last slide in all copies of
the document to comply with the attribution requirements of the
license. If you make a change, feel free to add your name and
organization to the list of contributors on this page as you republish
the materials.

Initial Development: Charles Severance, University of Michigan School
of Information

… Insert new Contributors and Translators here

...

http://www.dr-chuck.com/
http://open.umich.edu/

Page 44 © Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 45

Assessment

• Assessment Type(s):
✓Demonstrations
✓Interviews
✓Journals
✓Observations
✓Labs
✓Projects
✓Portfolios
✓Rubrics
✓Surveys
✓Teacher-Made Test
✓Writing Samples

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 46

STEAM Clown™ Productions

Reference Slides

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 47

Learning Domain, CTE Standards and Stuff like that…

• Learning Domain
[] cognitive [] affective[] psychomotor

• What are some cognitive skills required for success
in your pathway?

• What are some affective skills required for success in
your pathway?

• What are some psychomotor skills required for
success in your pathway?

• Time:
• Lecture

• Lab

• Standards
• CTE

• CCSS

• NCSS

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 48 © Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 49

Page 50

STEAM Clown™ Productions

Appendix

Page 51

Appendix A: License & Attribution

• This interpretation is primarily
the Intellectual Property of
Jim Burnham, Top STEAM
Clown, at STEAMClown.org

• This presentation and content
is distributed under the
Creative Commons License
CC-by-nc-sa-3.0

• My best attempt to properly
attribute, or reference any
other sources or work I have
used are listed in Appendix B

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

https://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.steamclown.org/

Page 52

Appendix B: Attribution for Sources Used

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

