Conditional Execution
Chapter 3

Python for Everybody
www.py4e.com

www.pythonlearn.com

S Conditional Steps

X=5
@ Yes

X = 5
Yes if x < 10: _ Smaller

print ('Smaller") FINIs
1f x > 20:
No print('Bigger') print ("Bigger’)

print ('Finis')
print('Finis’)

Comparison Operators

e Boolean expressions ask a
guestion and produce a Yes or No
result which we use to control
program flow

e Boolean expressions using
comparison operators evaluate to
True / False or Yes / No

e Comparison operators look at
variables but do not change the
variables

Python Meaning
< Less than
<= Less than or Equal to
== Equal to
>= Greater than or Equal to
> Greater than
= Not equal
Remember: “=" Is used for assignment.

http://en.wikipedia.org/wiki/George_Boole

Comparison Operators

X = D
1f x == X
print ('Equals 5'") EquaIS5
1f x > 4
print ('Greater than 4")
1f x >= 5
print ('Greater than or Equals 5'")

Greater than 4

Greater than or Equals 5

if x < 6 : print('Less than 6'") Less than 6
1f x <= 5 :

print ('Less than or Equals 5'") Less than or Equals 5
1f x !'= 6 :

print ('Not equal 6'") Not equal 6

print ('Afterwards 5'")

print ('Before 6')
if % == 6 Before 6

One-Way Decisions

= 5
print ('Before 5') Before 5
X == :
print ('Is 5') S 5

print ('Third 5") Third 5

Afterwards 5

print ('Is 06')
print ('Is Still o6'")
print ('Third 6'")

p]fiflt ('"Afterwards 060') Afterwards 6

print('ls 5')

print(‘Still 5"
print("Third 5

Indentation

e |[ncrease indent indent after an If statement or for statement (after :)

e Maintain indent to indicate the scope of the block (which lines are affected
by the Iif/for)

e Reduce indent back to the level of the If statement or for statement to
Indicate the end of the block

e Blank lines are ignored - they do not affect indentation

e Comments on a line by themselves are ignored with regard to indentation

Warning: Turn Off Tabs!!

e Atom automatically uses spaces for files with ".py" extension (nice!)

e Most text editors can turn tabs Into spaces - make sure to enable this
feature

- NotePad++: Settings -> Preferences -> Language Menu/Tab Settings
- TextWrangler: TextWrangler -> Preferences -> Editor Defaults

e Python cares a *lot* about how far a line is indented. If you mix tabs and
spaces, you may get “indentation errors” even if everything looks fine

< NeNe TextWrangler Preferences

n u
These settings are used for new documents, and for documents without saved state. I h IS WI I | Save yo u

Application ™ Auto-indent [| Soft wrap text

s | [B much unnecessary

Editing: General
Editing: Keyb-——- [1 Smart quotes () Page guide

Editor Defau O Window width alin
File Filters @Aum—expand tabs o I n

) — .. Character width
File Search || Show invisibles e

FTP Settings Sh Width: 80
Languages oW s5paces

Menus (| Check spelling as you type
Text Colors

Text Encodings
Text Files

Text Printing Default font: Monaco-12, 4 spaces per tab [)

Text Search Print Backup/Auto-Completion MISC.

Text Status Display General Editing Mew Document/Default Directory File Association Language Menu/Tab Settings
Windows

ET Syntax coloring

Language Meru Tah Settings

Make language menu compact (Defaul] [P

normal
actionscript

Mormal Text ada

PHP asm
C asp
CH+ autoit
C# bash
Objective-C batch
Java c
Resource file cami
HTML n:rr!ak_e
XML
Makefile
Fascal
Batch

MS IMI file Replace by space
M MS Shela

Available items Disabled items

Tab size : 4

Increase / maintain after if or for

decrease to indicate end of block

—

—
—
—

f I 1
(I
!

X = 5
1f x > 2
print ('Bigger than 2'")
print ('Still bigger')
print ('Done with 2')

for 1 1n range (5)
print (1)
1f 1 > 2
print ('Bigger than 2'")
print ('Done with 1', 1)
print ('All Done')

Think About begin/end Blocks

1f x > 2

print ('Bigger than 2'")
print ('Still bigger')
print ('Done with 2'")

for 1 1n range(d)

orint (1)
1f 1 > 2
print ('Bigger than 2'")

print ('Done with 1', 1)
print ('"A1l1l Done')

Nestea 0 yes
Decisions
°
X = 42

1f x > 1 JASES)
print ('More than one')

1f x < 100 : no
print ('Less than 100") print('Less than 100"
print ('All done')
print(‘'All Done')

Two-way Decisions

e Sometimes we want to

!
do one thing Iif a logical no yes
expression Is true and
something else if the
expression Is false print('Not bigger") print('Bigger")

o |t IS like a fork In the
road - we must choose
one or the other path but print("All Done")
not both

Two-way Decisions
with else:

X=4
no yes
X = 4
1f x > 2 o _ | o |
orint ('Bigger') print('Not bigger’) print('Bigger’)

else :
print ('Smaller')

' "Al1l ' :
print (done') print('‘All Done")

Visualize Blocks

1f x > 2
print ('Bigger')

print('Not bigger’) print('Bigger’)
print('‘All Done')

else :
print ('Smaller')

print ('"All done')

More Conditional Structures...

Multi-way

1f x < 2

print ('small')
elif x < 10

print ('Medium')
else :

print ('LARGE")
print ('"All done')

no

@ ye

no
print('LARGE)
print(‘All Done')

print(‘small’)
print('Medium’)

Multi-way

print('small’)
x = 0
1f x < 2

print ('"Medium') no

else : _ '
print ('LARGE') print(LARGE’)
print ('All done')
print(‘All Done")

Multi-way L% —

print('small’)
print('‘Medium’)

X = 5
1f x < 2

print ('small')
elif x < 10

print ('Medium')

else :

print ('All done')

X=05
@ yes
no
e
no

print("‘All Done')

X =20
yes
print('small’)
no
<=
no

Multi-way

x = 20
1f x < 2

print ('small'")
elif x < 10

print ('Medium')

else :
print ('LARGE') print(LARGE")
print ('All done')
print('All Done')

print(‘Medium’)

Multi-way

1f x < 2
print ('Small')
elif x < 10

No Else print ("Medium')
1if x < 2 print ('Big')

print ('Small') elif x < 40
elif x < 10 : print ('Large')
elif x < 100:
print ('Huge')

print ('All done') else
print ('Ginormous')

print ('Medium')

Multi-way Puzzles

Which will never print
regardless of the value for x?

1f x < 2

print ('Below 2'")
elif x >= 2

print ('Two or more')
else

print ('Something else')

1f x

elif

elif

else

< 2

print ('Below 2'")
x < 20

print ('Below 20")
x < 10

print ('Below 10")

print ('Something else')

The try / except Structure

® You surround a dangerous section of code with try and except
® |f the code in the try works - the except is skipped

® |f the code in the try fails - it jumps to the except section

S cat notry.py

astr 'Hello Bob'
1str = 1nt(astr)
print ('First', 1str)
= '123"

1str = 1nt(astr)
print ('Second', 1str)

$ python3 notry.py
Traceback (most recent call last):

File "notry.py", line 2, iIn <module>
Istr = int(astr)VValueError: invalid literal
for int() with base 10: 'Hello Bob’

Done

$ python3 notry.py
Traceback (most recent call last):

File "notry.py", line 2, iIn <module>
The Istr = int(astr)VValueError: invalid literal
orogram for int() with base 10: 'Hello Bob’

StOpS S cat notry.py
here astr = '"Hello Bob' All

e——)] STr = int (astr) Done

Generic
Computer

Software

Input

. Central
Devices

Processing

Secondary
Memory

Output
Devices

Generic
Computer

Software

Input

. Central
Devices

Processing
Unit
Secondary
Memory

Output
Devices

astr = 'Hello Bob' When the first conversion fails - it

try: just drops into the except: clause
istr = int (astr) and the program continues.
except:
1Str =]
S python tryexcept.py
print ('First', 1str) First -1
Second 123
astr = '123"
try:
1str = 1nt(astr)
except:
istr = -1 When the second conversion

succeeds - It just skips the except:
print ('Second', 1str) <= clause and the program continues.

try / except

astr = 'Bob'
try:
print ('Hello'")
1str = 1nt(astr)
print ('There')
except:
istr = -1

print ('Done', 1str)

print('Done’, istr)

e

Safety net

Sample try / except

rawstr = i1nput ('Enter a number:')
try:
ival = int(rawstr) > python3 trynum.py
except : Enter a number:42
ival = -1 Nice work

S python3 trynum.py
Enter a number:forty-two
Not a number

S

1f i1ival > O

print ('Nice work")
else:

print ("Not a number')

Summary

Comparison operators Nested Decisions
—_= <= >= > < =

e Multi-way decisions using elif
Indentation

e try / except to compensate for
One-way Decisions errors

Two-way decisions:
if: and else:

Exercise

Rewrite your pay computation to give the
employee 1.5 times the hourly rate for hours
worked above 40 hours.

FEnter Hours: 45
Enter Rate: 10

Pay: 475.0
47/5=40*10+5*15

Exercise

Rewrite your pay program using try and except so
that your program handles non-numeric input
gracefully.

Enter Hours: 20
Enter Rate: nine
Frror, please enter numeric 1nput

Enter Hours: forty
Frror, please enter numeric 1nput

Acknowledgements / Contributions

These slides are Copyright 2010- Charles R. Severance

() of the University of Michigan School of
Information and made available under a Creative Commons
Attribution 4.0 License. Please maintain this last slide in all
copies of the document to comply with the attribution
requirements of the license. If you make a change, feel free to
add your name and organization to the list of contributors on this
page as you republish the materials.

Initial Development: Charles Severance, University of Michigan
School of Information

... Insert new Contributors and Translators here

http://www.dr-chuck.com/

