Ste.N clowntM Produchons
 Loclectines-Inmoducion

OVERVIEW \& INTRODUGHON

- Digital Design underpins the creation of the myriad of imaginative digital devices that surround us...
- Computers
- Calculators
- Phones
- Digital watches
- Microwave ovens

Really...

 Everything- Robots...

DICHAL DEACN

- Organizing an arrays of simple switches into a discrete system that performs transformations on two-level (Binary) information in a meaningful and predictable way

SEE APPENDIX A, FORLICENSING \& AHTRIBUHON IN:ORMATMON

by-nc-sa-3.0
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/fag/\#what-does-some-rights-reserved-mean

WHITH YOU WILL KNOW...

- Prior Knowledge
- Binary Numbers
- How to count in binary
- How to Add in Binary
- How to Multiply in Binary
- What You Will Know \& Be Able To Do
- Explain the difference between AND, OR, NOT logic gates
- Read and fill out a Truth Table
- Convert a Logical Expression in to Gate Diagram
- Convert a Logical Expression in to a Truth Table
- Binary
-Logical Expression
- Truth Table
\& Squeaky finge

ReVIEW EINAPY NUMBERS

- Take 10 minutes and review binary numbers
- Binary Number Systems
- Binary Digits

UOW 70 CONVERT EROM BINARY OR DECIMAL

Computer Humor

- Binary is as easy as 01, 10, 11

Convert the Following Binary Numbers:

$$
\begin{aligned}
0011=\text { ? } & 1 \times 2+1 \times 1=3 \\
1011=\text { ? } & 1 \times 8+0 \times 4+1 \times 2+1 \times 1=11 \\
10101=\text { ? } & 1 \times 16+0 \times 8+1 \times 4+0 \times 2+1 \times 1=21 \\
110011=\text { ? } & 1 \times 32+1 \times 16+0 \times 8+0 \times 4+1 \times 2+1 \times 1=51
\end{aligned}
$$

Place Values

BIJ:PY Qut

- https://docs.google.com/forms/d/e/1FAlpQLSc82cMm tQFsOCJ7IW1a sVz7N6eGZI64MbAlJmrdc6ZndfYPw/vi ewform?usp=sf link

ADPNG:INARY NUM:ERS

Rule $1 \rightarrow 0+0=0$
Rule $2 \rightarrow 0+1=1$
Just like
decimal 110 Rule $3 \rightarrow 1+0=1\}$ addition Rule $4 \rightarrow 1+1=10 \leftarrow$ Surprise!

Since $1+1=10$
Since $0+1=1$
Since $1+0=1$

MULTPLYYNG BINARY NUMBERS

$$
\left.\begin{array}{l}
\text { Rule } 1 \rightarrow 0 * 0=0 \\
\text { Rule } 2 \rightarrow 0 * 1=0 \\
\text { Rule } 3 \rightarrow 1 * 0=0 \\
\text { Rule } 4 \rightarrow 1 * 1=1
\end{array}\right\} \begin{aligned}
& \text { Just like } \\
& \text { decimal } \\
& \text { multiplication }
\end{aligned}
$$

ADDINGAND HULHPYNGINBIDA:Y

- Adding Binary Numbers
- Adding in binary | Applying mathematical reasoning
- Multiplying Binary Numbers
- Multiplying in binary | Applying mathematical reasoning

SHEAN GLOWN'M PRODUCHONS

HiRO TOLOCIC CAHES

Bifl:Y Iocic

- Deals with binary variables that take 2 discrete values (0 and 1), and with logic operations
-Three basic logic operations:
- AND, OR, NOT
- Binary/logic variables are typically represented as letters: A,B,C,...,X,Y,Z

Bagclocic Operators

- AND
- OR

Binary
-NOT

Unary

- $F(a, b)=a \bullet b, \quad F$ is 1 if and only if $a=b=1$
- $G(a, b)=a+b, G$ is 1 if either $a=1$ or $b=1$
- $\mathrm{H}(\mathrm{a})=\mathrm{a}^{\prime}, \quad \mathrm{H}$ is 1 if $\mathrm{a}=0$

BINARY LOC/C EUNCHON

F(var) = expression
 Operators ($+, \bullet,{ }^{\prime}$)

Variables
Constants (0,1)
Groupings (parenthesis)
This is a set of Binary variables Defines the set of "Inputs"
$E x: F(a, b)=\left(a^{\prime} \bullet b\right)+b^{\prime}$

$$
F(a, b, c)=a \cdot\left(\left(b+c^{\prime}\right)+\left(b^{\prime}+c\right)\right)
$$

BASICAND \& ORLOCIC OPERARORS

1-bit logic AND resembles binary multiplication:

$$
0 \bullet 0=0
$$

$$
0 \cdot 1=0
$$

$$
1 \cdot 0=0
$$

$$
1 \cdot 1=1
$$

1-bit logic OR resembles binary addition, except for one operation:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1
\end{aligned}
$$

$$
1+1=1\left(\neq 10_{2}\right)
$$

$$
\frac{A}{B} \square F=A+B
$$

COWBINATHONAL LOCTC CATES

- Outputs depend directly on their inputs
- Outputs are generated asynchronously and instantaneous*
- Do not require a clock or other synchronous signals
- Let's call them "Logic Gates"

LOAC chites

- Logic gates are abstractions of electronic circuit components that operate on one or more input signals to produce an output signal

AND CATE

- This AND gate has two inputs and an output

2-Input AND

- Output is zero unless both Inputs are 1's

The AND operation is mathematically defined as the product of two Boolean values

Truth table: tabular form that uniquely

A	B	$F=A \bullet B$
0	0	0
0	1	0
1	0	0
1	1	1

OR C.ITE

- This OR gate has two inputs and an output

2-Input OR

- Output is 1 if any of the Inputs are 1's

The OR operation is mathematically defined as the summation of two Boolean values

Truth table: tabular form that uniquely represents the relationship between the input variables of a function and its output

ROT (INVERTER) CATE

- This NOT gate has one input

and one output

- This is an "inverter" function
- Output is 1 if the Input is 0 , and 0 if the Input is 1

Truth table: tabular form that uniquely represents the relationship between the input variables of a function and its output

TRUHITABLES ROR LOC/C OPERATORS

Truth table: tabular form that uniquely represents the relationship between the input variables of a function and its output

2-Input AND		
A	B	$F=A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

2-Input OR

A	B	$F=A+B$		
0	0	0	$N O T$	
0	1	1	A	$F=A^{\prime}$
1	0	1		1
1	1	1	1	0

trunluaslas - cileck ior understanding

Truth table: tabular form that uniquely represents the relationship between the input variables of a function and its output

2-Input AND		
A	B	$F=A \cdot B$
0	0	
0	1	
1	0	
1	1	

2-Input OR

A	B	$F=A+B$			
0	0		NOT		
0	1		A		$F=A^{\prime}$
1	0		0		
1	1				

TRUHITABLIF - CIIECKHOR UNDERSHANDING

Q: Let a function F() depend on n variables. How many rows are there in the truth table of $\mathrm{F}(\mathrm{a}, \mathrm{b})=(\mathrm{a}+\mathrm{b})$?

What about $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c})=(\mathrm{a}+\mathrm{b}+\mathrm{c})$?
What about $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})$?

A: 2^{n} rows, since there are 2^{n}

A	B	$F=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

possible binary patterns / combinations for the n variables

cमeck our wishoclink

- Learning about Logic Gates and Circuits
- https://logic.ly/lessons/

LOCIC CAHES - CUECK HOR UNDERSTANDING

- What are the outputs for each of these gates with the specified inputs values?

LOCIC CAHES - CUECK HOR UNDERSTANDING

- What are the outputs for each of these gates with the specified inputs values?

ATD GATE + TNVERTIER

- This NAND gate has two inputs and an output
- Output is 1 unless both Inputs are 1's, then it's 0

2-Input NAND

A	B	$F=A \bullet B$
0	0	1
0	1	1
1	0	1
1	1	0

RAND GATE

- This NAND gate has two inputs and an output

2-Input NAND

- Output is 1 unless both Inputs are 1's, then it's 0

The NAND operation is mathematically defined as the product of two Boolean values

Truth table: tabular form that uniquely

A	B	$F=A \cdot B$
0	0	1
0	1	1
1	0	1
1	1	0

NORCAHE

- This NOR gate has two inputs and an output

The NOR operation is mathematically defined as the summation of two Boolean values

Truth table: tabular form that uniquely represents the relationship between the input variables of a function and its output

XOR GATE

- This XOR gate has two inputs and an output

- Output is 1 if the Inputs are different

The XOR operation is mathematically defined as the summation of two Boolean values if they are different

Truth table: tabular form that uniquely

2-Input XOR
 represents the relationship between the input variables of a function and its output

SHEAM CLOWN'M PRODUCHONS

REFERENCE SIIDES

SHEAM CLOWN'M PRODUCHONS

APPENDIX

APPENDIX A: LICENSEE ATRIDUNON

- This interpretation is primarily the Intellectual Property of Jim Burnham, Top STEAM Clown, at STEAMClown.org
- This presentation and content is distributed under the Creative Commons License CC-by-nc-sa-3.0
- My best attempt to properly attribute, or reference any other sources or work I have used are listed in Appendix B

Under the following terms:

Attribution - You must give appropriate credit, provide a
link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

APPENDX B: AMRIBUHON ROR SOURGES USED

- Power Point Logic Gates Symbols - Oliver Mannay
- Slide Share Logic Gates
-PPT from Michigan Tech EE 4271

