
Page 1

STEAM Clown™ Productions

Python-Loops & Iterations

Page 3

• Loops (repeated steps) have iteration variables that change
each time through a loop. Often these iteration variables
go through a sequence of numbers

• Computers are often used to automate repetitive tasks

• Repeating identical or similar tasks without making errors
is something that computers do well and people do poorly

• Because iteration is so common, Python provides several
language features to make it easier

Objective, Overview & Introduction

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 4

•Prior Knowledge & Certifications
• You should have a basic understanding of Python

language structures

•What You Will Know & Be Able To Do
• You will be able to implement loop code that can be use

to run code over and over again till the loop parameters
are met

What You Will Know…

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 5

STEAM Clown™ Productions

See Appendix A,B,C, for Licensing & Attribution information
These slides are an adaption, to better target my SVCTE High School Mechatronics Engineering class,
primarily from Dr. Charles R. Severance’s Python for Everybody class https://www.py4e.com/ … but from
other sources as well. See Appendix A

CC BY-NC-SA 4.0
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

GNU Public License
Any included Programming Code Is licensed under the GNU General Public License v3.0

EUPL (European Union Public Licence) Code and Content is also licensed under the EUPL 1.2 or later

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

https://www.py4e.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://www.gnu.org/licenses/gpl-3.0.en.html
https://eupl.eu/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://eupl.eu/

Page 8

• Individual Students will submit working code
•Students, as individuals or teams will present orally
how they solved the coding challenge, and depth of
understanding will be graded

•Success will be determined by how well your code
runs as checked by the instructor after you have
turned in your Lastname-Firstname-ProgramName.py
text files

How Will You Be Measured

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 9

• Iteration

•Loop

•While

•For

New Words…

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 10

• The main way we will implement Python code will be by running
it on a Raspberry Pi, using the Linux command terminal shell, or
the Idle3 Python interpreter

• If you don’t have a Raspberry Pi, or if you don’t have Python
installed, there are a few Python interpreters online. This lets
you try code with out having to install Python on your own PC or
physically have a Raspberry Pi or other hardware. Here are a
few. If you find a better one, please let me know

• Python 3 On-Line Python Interpreter - Tutorials Point
• Python 2.7 On-Line Python Interpreter - Tutorials Point

• Python Interpreter - Online GDB
• Python Shell - Python.org

Where Can I Run My Python Code?

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

https://www.tutorialspoint.com/execute_python3_online.php
https://www.tutorialspoint.com/execute_python_online.php
https://www.onlinegdb.com/online_python_interpreter
https://www.python.org/shell/

Page 11

I got this… can I jump Ahead?

• Jump Ahead and do the labs,
save them and turn them in
(show me and turn in later)

• Still need something to do? Try
writing your own program or try
this Extra Credit <linktolab>
(show me and turn in later)

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 12

•PY4E Chapter 5 – Loops & Iterations

•PY4E Video Lectures – Loops & Iterations

Resources & Materials Needed

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

https://www.py4e.com/html3/05-iterations
https://www.py4e.com/lessons/loops

Page 13

STEAM Clown™ Productions

Mostly Dr. Charles R.
Severance’s Slides

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 14

Loops and Iteration
Chapter 5

Python for Everybody

www.py4e.com

www.pythonlearn.com

Page 15

Repeated Steps

n > 0 ?

Loops (repeated steps) have iteration variables that

change each time through a loop. Often these iteration

variables go through a sequence of numbers.

No

print('Blastoff')

Yes

n = 5

print(n)

Output:

5

4

3

2

1

Blastoff!

0

n = n -1

n = 5

while n > 0 :

print(n)

n = n – 1

print('Blastoff!')

print(n)

Page 16

Lab #1 – Simple While Loop

• Enter this code

• Try it with different
numbers

• Can you make 'n' count
by more than +1

n = 5

while n > 0 :

print(n)

n = n - 1

print('Blastoff!')

print(n)

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Type this code, then save, and when finished turn in…
then save as, and use for next lab

Page 17

An Infinite Loop

n = 5

while n > 0 :

print('Lather')
print('Rinse')

print('Dry off!')

n > 0 ?
No

print('Dry off!')

Yes

n = 5

print('Lather')

print('Rinse')

What is wrong with this loop?

Page 18

Another Loop
n = 0

while n > 0 :

print('Lather')
print('Rinse')

print('Dry off!')

n > 0 ?
No

print('Dry off!')

Yes

n = 0

print('Lather')

print('Rinse')

What is this loop doing?

Page 19

Breaking Out of a Loop
• The break statement ends the current loop and jumps to the

statement immediately following the loop

• It is like a loop test that can happen anywhere in the body of the

loop

> hello there

hello there

> finished

finished

> done

Done!

while True:

line = input('> ')

if line == 'done' :

break

print(line)

print('Done!')

Page 20

Lab #2 – "break" Loop

• Enter this code

• How do you end
this loop?

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

while True:

line = input('> ')

if line == 'done' :

break

print(line)

print('Done!')

Page 21

True ?
No

print('Done')

Yes

....

...

while True:

line = input('> ')

if line == 'done' :

break

print(line)

print('Done!')

http://en.wikipedia.org/wiki/Transporter_(Star_Trek)

break

http://en.wikipedia.org/wiki/Transporter_(Star_Trek)

Page 22

Finishing an Iteration with continue

The continue statement ends the current iteration and jumps to the

top of the loop and starts the next iteration

while True:

line = input('> ')

if line[0] == '#' :

continue

if line == 'done' :

break

print(line)

print('Done!')

> hello there

hello there

> # don't print this

> print this!

print this!

> done

Done!

Page 23

True ?
No

print('Done')

Yeswhile True:

line = raw_input('> ')

if line[0] == '#' :

continue

if line == 'done' :

break

print(line)

print('Done!')

...

....

continue

Page 24

•While loops are called “indefinite loops” because they
keep going until a logical condition becomes False

•The loops we have seen so far are pretty easy to
examine to see if they will terminate or if they will be
“infinite loops”

•Sometimes it is a little harder to be sure if a loop will
terminate

Indefinite Loops

Page 25

Definite Loops

• Iterating over a set of items…

Page 26

Definite Loops
• Quite often we have a list of items of the lines in a file -

effectively a finite set of things

• We can write a loop to run the loop once for each of

the items in a set using the Python for construct

• These loops are called “definite loops” because they

execute an exact number of times

• We say that “definite loops iterate through the

members of a set”

Page 27

A Simple Definite Loop

for i in [5, 4, 3, 2, 1] :

print(i)

print('Blastoff!')

5

4

3

2

1

Blastoff!

Page 28

Lab #3 – "for" Loop

• Enter this code

• How does this loop
end?

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

for i in [5, 4, 3, 2, 1] :

print(i)

print('Blastoff!')

Page 29

Looking at in...
• The iteration variable

“iterates” through the

sequence (ordered set)

• The block (body) of code is

executed once for each

value in the sequence

• The iteration variable moves

through all of the values in

the sequence

for i in [5, 4, 3, 2, 1] :

print(i)

Iteration variable

Five-element

sequence

Page 30

A Definite Loop with Strings

friends = ['Joseph', 'Glenn',

'Sally']

for friend in friends :

print('Happy New Year:', friend)

print('Done!')
Happy New Year: Joseph

Happy New Year: Glenn

Happy New Year: Sally

Done!

Page 31

A Simple Definite Loop

for i in [5, 4, 3, 2, 1] :

print(i)

print('Blastoff!') 5

4

3

2

1

Blastoff!

Done?
Yes

print('Blast off!')

print(i)

No
Move i ahead

Definite loops (for loops) have explicit iteration variables

that change each time through a loop. These iteration

variables move through the sequence or set.

Page 32

Done?
Yes

print(i)

No

Move i ahead

•The iteration variable “iterates”

through the sequence

(ordered set)

•The block (body) of code is

executed once for each value

in the sequence

•The iteration variable moves

through all of the values in the

sequence

for i in [5, 4, 3, 2, 1] :

print(i)

Page 33

print(i)

i = 5

print(i)

i = 4

print(i)

i = 3

print(i)

i = 2

print(i)

i = 1
for i in [5, 4, 3, 2, 1] :

print(i)

Done?
Yes

print(i)

No

Move i ahead

Page 34

Loop Idioms:

What We Do in Loops

Note: Even though these examples are simple,

the patterns apply to all kinds of loops

Page 35

Making “smart” loops

The trick is “knowing”

something about the whole

loop when you are stuck

writing code that only sees

one entry at a time

Set some variables to

initial values

Look for something or

do something to each

entry separately,

updating a variable

for thing in data:

Look at the variables

Page 36

Looping Through a Set
print('Before')

for thing in [9, 41, 12, 3, 74, 15] :

print(thing)

print('After')
$ python basicloop.py

Before

9

41

12

3

74

15

After

Page 37

Lab #4 – Doing Something in a "for" Loop

• Enter this code

• What should we do?

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

print('Before')

for thing in [9, 41, 12, 3, 74, 15] :

print(thing)

print('After')

Page 38

What is the Largest Number?

Page 39

3

What is the Largest Number?

Page 40

What is the Largest Number?

41

Page 41

What is the Largest Number?

12

Page 42

What is the Largest Number?

9

Page 43

What is the Largest Number?

74

Page 44

What is the Largest Number?

15

Page 45

What is the Largest Number?

Page 46

3

What is the Largest Number?

41 12 9 74 15

Page 47

What is the Largest Number?

largest_so_far -1

Page 48

3

What is the Largest Number?

largest_so_far 3

Page 49

What is the Largest Number?

41

largest_so_far 41

Page 50

What is the Largest Number?

12

largest_so_far 41

Page 51

What is the Largest Number?

9

largest_so_far 41

Page 52

What is the Largest Number?

74

largest_so_far 74

Page 53

What is the Largest Number?

15

74

Page 54

3

What is the Largest Number?

41 12 9 74 15

74

Page 55

Lab #5 – Find the Largest Number

• Enter this code

• Find the Largest Number

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

print('Before')

for thing in [9, 41, 12, 3, 74, 15] :

print(thing)

print('After')

Page 56

More Loop Patterns…

Page 57

Counting in a Loop
zork = 0

print('Before', zork)

for thing in [9, 41, 12, 3, 74, 15] :

zork = zork + 1

print(zork, thing)

print('After', zork)

$ python countloop.py

Before 0

1 9

2 41

3 12

4 3

5 74

6 15

After 6

To count how many times we execute a loop, we introduce a counter variable

that starts at 0 and we add one to it each time through the loop.

Page 58

Summing in a Loop
zork = 0

print('Before', zork)

for thing in [9, 41, 12, 3, 74, 15] :

zork = zork + thing

print(zork, thing)

print('After', zork)

$ python countloop.py

Before 0

9 9

50 41

62 12

65 3

139 74

154 15

After 154

To add up a value we encounter in a loop, we introduce a sum variable that

starts at 0 and we add the value to the sum each time through the loop.

Page 59

Finding the Average in a Loop

count = 0

sum = 0

print('Before', count, sum)

for value in [9, 41, 12, 3, 74, 15] :

count = count + 1

sum = sum + value

print(count, sum, value)

print('After', count, sum, sum / count)

$ python averageloop.py

Before 0 0

1 9 9

2 50 41

3 62 12

4 65 3

5 139 74

6 154 15

After 6 154 25.666

An average just combines the counting and sum patterns and

divides when the loop is done.

Page 60

Filtering in a Loop

print('Before')

for value in [9, 41, 12, 3, 74, 15] :

if value > 20:

print('Large number',value)

print('After')

$ python search1.py

Before

Large number 41

Large number 74

After

We use an if statement in the loop to catch / filter the

values we are looking for.

Page 61

Search Using a Boolean Variable

found = False

print('Before', found)

for value in [9, 41, 12, 3, 74, 15] :

if value == 3 :

found = True

print(found, value)

print('After', found)

$ python search1.py

Before False

False 9

False 41

False 12

True 3

True 74

True 15

After True

If we just want to search and know if a value was found, we use a variable that

starts at False and is set to True as soon as we find what we are looking for.

Page 62

How to Find the Smallest Value

largest_so_far = -1

print('Before', largest_so_far)

for the_num in [9, 41, 12, 3, 74, 15] :

if the_num > largest_so_far :

largest_so_far = the_num

print(largest_so_far, the_num)

print('After', largest_so_far)

$ python largest.py

Before -1

9 9

41 41

41 12

41 3

74 74

74 15

After 74

How would we change this to make it find the smallest value in the list?

Page 63

Finding the Smallest Value
smallest_so_far = -1

print('Before', smallest_so_far)

for the_num in [9, 41, 12, 3, 74, 15] :

if the_num < smallest_so_far :

smallest_so_far = the_num

print(smallest_so_far, the_num)

print('After', smallest_so_far)

We switched the variable name to smallest_so_far and switched the > to <

Page 64

Finding the Smallest Value
smallest_so_far = -1

print('Before', smallest_so_far)

for the_num in [9, 41, 12, 3, 74, 15] :

if the_num < smallest_so_far :

smallest_so_far = the_num

print(smallest_so_far, the_num)

print('After', smallest_so_far)

We switched the variable name to smallest_so_far and switched the > to <

$ python smallbad.py

Before -1

-1 9

-1 41

-1 12

-1 3

-1 74

-1 15

After -1

Page 65

smallest = None

print('Before')

for value in [9, 41, 12, 3, 74, 15] :

if smallest is None :

smallest = value

elif value < smallest :

smallest = value

print(smallest, value)

print('After', smallest)

$ python smallest.py

Before

9 9

9 41

9 12

3 3

3 74

3 15

After 3

We still have a variable that is the smallest so far. The first time through the loop

smallest is None, so we take the first value to be the smallest.

Finding the Smallest Value

Page 66

The is and is not Operators

• Python has an is operator

that can be used in logical

expressions

• Implies “is the same as”

• Similar to, but stronger than

==

• is not also is a logical

operator

smallest = None

print('Before')

for value in [3, 41, 12, 9, 74, 15] :

if smallest is None :

smallest = value

elif value < smallest :

smallest = value

print(smallest, value)

print('After', smallest)

Page 67

Lab #6 – add a lab

• Enter this code

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 68

Summary

• While loops (indefinite)

• Infinite loops

• Using break

• Using continue

• None constants and variables

• For loops (definite)

• Iteration variables

• Loop idioms

• Largest or smallest

Page 69

Acknowledgements / Contributions

These slides are Copyright 2010- Charles R. Severance (www.dr-
chuck.com) of the University of Michigan School of Information and
open.umich.edu and made available under a Creative Commons
Attribution 4.0 License. Please maintain this last slide in all copies of
the document to comply with the attribution requirements of the
license. If you make a change, feel free to add your name and
organization to the list of contributors on this page as you republish
the materials.

Initial Development: Charles Severance, University of Michigan School
of Information

… Insert new Contributors and Translators here

...

http://www.dr-chuck.com/
http://open.umich.edu/

Page 70

Assessment

• Assessment Type(s):
✓Demonstrations
✓Interviews
✓Journals
✓Observations
✓Labs
✓Projects
✓Portfolios
✓Rubrics
✓Surveys
✓Teacher-Made Test
✓Writing Samples

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 71

STEAM Clown™ Productions

Reference Slides

© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

Page 72

Finding the Largest Value

largest_so_far = -1

print('Before', largest_so_far)

for the_num in [9, 41, 12, 3, 74, 15] :

if the_num > largest_so_far :

largest_so_far = the_num

print(largest_so_far, the_num)

print('After', largest_so_far)

$ python largest.py

Before -1

9 9

41 41

41 12

41 3

74 74

74 15

After 74

We make a variable that contains the largest value we have seen so far. If the current

number we are looking at is larger, it is the new largest value we have seen so far.

Page 74

STEAM Clown™ Productions

Appendix

Page 75

STEAM Clown™ Productions

Can I get a copy of these
Slides? Yes, Probably…

Most presentation lecture slides can be found indexed on www.steamclown.org
and maybe blogged about here on Jim The STEAM Clown’s Blog, and on STEAM
Clown’s Mechatronics Engineering Google site, where you can search for the
presentation title. While you are there, sign up for email updates

http://www.steamclown.org/
http://steamclown-mechatronics.blogspot.com/
https://sites.google.com/view/steam-clown-mechatronics/home

Page 76

Appendix A: License & Attribution

• This interpretation is primarily
the Intellectual Property of Jim
Burnham, Top STEAM Clown,
at STEAMClown.org

• This presentation and content
is distributed under the
Creative Commons License CC-
BY-NC-SA 4.0

• My best attempt to properly
attribute, or reference any
other sources or work I have
used are listed in Appendix C

Please maintain this slide with any modifications you make
© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

mailto:topClown@STEAMClown.org
http://steamclown.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.steamclown.org/

Page 77

Appendix B: Code License & Attribution

• This interpretation is primarily the
Intellectual Property of Jim Burnham,
Top STEAM Clown, at STEAMClown.org

• The programming code found in this
presentation or linked to on my Github
site is distributed under the:

• GNU General Public License v3.0

• European Union Public Licence EUPL 1.2 or later

• My best attempt to properly attribute, or
reference any other sources or work I
have used are listed in Appendix C

Please maintain this slide with any modifications you make
© Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

mailto:topClown@STEAMClown.org
http://steamclown.org/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://eupl.eu/
http://www.steamclown.org/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://eupl.eu/

Page 78

• Charles R. Severance slides can be found on the https://www.py4e.com/ site are
Copyright 2010 - Charles R. Severance (www.dr-chuck.com) of the University of
Michigan School of Information and made available under a Creative Commons
Attribution 4.0 License. Please maintain this last slide in all copies of the document
to comply with the attribution requirements of the license. If you make a change,
feel free to add your name and organization to the list of contributors on this page
as you republish the materials.

• Initial Development: Charles Severance, University of Michigan School of Information

• Modifications and Adaptions by Jim Burnham, Top Clown @ www.steamclown.org

Appendix C: Primary Sources &
Attribution for Material Used

Please maintain this slide with any modifications you make

https://www.py4e.com/
www.dr-chuck.com
http://www.steamclown.org/

Page 79 © Copyright 2018 STEAM Clown™

STEAM Clown™

&
Productions

