
Programming-Language-Name-Of-Lab
Author: Jim Burnham - ​TopClown@STEAMClown.org
First Authored: Jan 13, 2018
Last Revised: 2019/01/21
Note to TopClown next time you edit: add hyperlinks to the python structures.
License: Distributed as Open Source. See the Appendix A, B, C for source and references.

Overview, Introduction and Objective:
This is a Python Lab (but could be C++ too) where you will write a program that prints ​all​ prime
numbers. The objective is to use your prior knowledge of Python coding to implement this
program.

Prior Knowledge:
● Doing Math, and checking the results with conditional ​if/else
● Understand conditional loops, including ​for ​ and ​while ​ loops
● Understand how to nest loops

What You Will Know & Be Able To Do:
● Have a greater level of understanding on how and when to use conditional statements

including ​if/else ​,​ for ​ and ​while ​ loops
● Understand how to nest loops
● Be able to describe what a Prime number is and how to calculate them

Resources & Materials Needed:
● PC, Laptop or Raspberry Pi
● Link to GutHub for Source

○ Python Template​ to start from
● Link to online C++ or Python Compiler

○ Python 3 On-Line Python Interpreter​ - Tutorials Point
○ Python 3 Interpreter​ - Online GDB

How You Will Be Measured:
● Programming Lab Rubric link (coming Soon)
● You will turn your code as a ​Lastname-Firstname-Prime.py​ in to the ​Google classroom​…

Check the Stream or the Programing category for C++ or Python

mailto:TopClown@STEAMClown.org
https://raw.githubusercontent.com/jimTheSTEAMClown/Python-Code/master/aTemplate.py
https://www.tutorialspoint.com/execute_python3_online.php
https://www.onlinegdb.com/online_python_interpreter
https://classroom.google.com/u/0/h

Scenario & Lab Instructions:
Write a program that prints ​all​ prime numbers. (Note: if your programming language does not
support arbitrary size numbers, printing all primes up to the largest number you can easily
represent is fine too.)

Tip:​ Python integers - The maximum value a variable of type integer can take is usually 2**31 -
1 on a 32-bit platform and 2**63 - 1 on a 64-bit platform.

Extra Credit #1:​ use a type(long) to calculate and output larger numbers than an integer can
hold.

Extra Credit #2: Write a program that asks the user to input a number and you then tell them if it
is a Prime number. Rather than calculating all the Prime numbers up to and including that
number, try to solve it using this algorithm described in this ​Large Prime Numbers​ explanation.
If that link has died, see the Hint section below.

Copy, Edit & Execute Code
Instructions for accessing any example code on Github

● You can start by copying ​Python Template​ to start from. Update the template with your
header comments and your code.

● Python Compiler
○ Use your Raspberry Pi
○ Python 3 On-Line Python Interpreter​ - Tutorials Point
○ Python 3 Interpreter​ - Online GDB

Expected Output:
2, 3, 5, 7, 11, 13,​… → up to the largest number your platform can hold in an Integer.

Turn In Your Code:
Turn your code as a ​Lastname-Firstname-Prime.py​ as specified in the ​How You Will Be
Measured​ section above.

http://mathforum.org/library/drmath/view/51539.html
https://raw.githubusercontent.com/jimTheSTEAMClown/Python-Code/master/aTemplate.py
https://www.tutorialspoint.com/execute_python3_online.php
https://www.onlinegdb.com/online_python_interpreter

Hint:

The Sieve of Eratosthenes
Eratosthenes (275-194 B.C., Greece) devised a 'sieve' to discover prime numbers. A sieve is
like a strainer that you use to drain spaghetti when it is done cooking. The water drains out,
leaving your spaghetti behind. Eratosthenes's sieve drains out composite numbers and leaves
prime numbers behind.

To use the sieve of Eratosthenes to find the prime numbers up to 100, make a chart of the first
one hundred positive integers (1-100):

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70
 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92 93 94 95 96 97 98 99 100

1. Cross out 1, because it is not prime.

2. Circle 2, because it is the smallest positive even prime. Now cross out every multiple of
2; in other words, cross out every second number.

3. Circle 3, the next prime. Then cross out all of the multiples of 3; in other words, every
third number. Some, like 6, may have already been crossed out because they are
multiples of 2.

4. Circle the next open number, 5. Now cross out all of the multiples of 5, or every 5th
number.

Continue doing this until all the numbers through 100 have either been circled or crossed out.
You have just circled all the prime numbers from 1 to 100!

For more on Prime number check out ​Ask Dr Math - Primality Testing

http://mathforum.org/library/drmath/sets/select/dm_primality.html

Hint for Extra Credit: Large Prime Numbers
Date: 12/17/97 at 13:55:22
From: Lynne & Dave Ware
Subject: Prime Numbers

To the Math Swat Team:

I believe that I read somewhere (Ivars Pederson [spelling?], I think)
that it is possible to determine if a very large number is prime using
a simple procedure. (But not to determine its factors). It didn't say
how this is done. If this is true, what is the algorithm?

Thanks for your consideration.

Dave Ware

Date: 12/17/97 at 15:50:01
From: Doctor Rob
Subject: Re: Prime Numbers

Good question! The person is probably Ivars Peterson, who is a popular
science writer.

The situation is a bit more complicated than you remember. The fact is
that the simple procedure does not provide a proof of primality, but
may provide a proof of compositeness. It is based on Fermat's Little
Theorem, which says:

 Theorem: If p is a prime number, a is an integer, and p is not
 a divisor of a, then p is a divisor of a^(p-1) - 1.

Given a number N we want to test, pick any old a, and find the
greatest common divisor of a and N, GCD(a,N). If this is not 1, then
it is a factor of N, and N is composite. If it is 1, then compute the
remainder r of a^(N-1) when divided by N. If r is not 1, then by
Fermat's Little Theorem, N cannot be prime, so is composite. This
gives the proof of compositeness.

By the way, you might as well choose 1 < a < N-1, since a and a-N
will give the same value of r, and since a = 1 or N-1 will always

give r = 1.

How to compute the remainder r? If N is even moderately large,
computing a^(N-1) and then dividing by N will be a bad idea, since the
number a^(N-1) will have many, many digits. The trick is to divide by
N and keep only the remainder at all intermediate steps. It may not be
obvious that this works, but it does. If N = 67, N-1 = 66, you might
compute a^66 by doing 65 multiplications. After each one, divide by 67
and keep only the remainder.

Better than doing a^66 by 65 multiplications (and 65 divisions by N),
you can shortcut the computation by the following trick:
a^66 = (a^33)^2, a^33 = a*a^32, a^32 = (a^16)^2, a^16 = (a^8)^2,
a^8 = (a^4)^2, a^4 = (a^2)^2, a^2 = a*a. Working from the last
equation backwards, you will need only 7 multiplications (and
7 divisions by N).

If r = 1, then what can we say? All prime numbers will give r = 1,
but there are a few composite numbers which will do so, too. For
example, if a = 2, N = 341 = 11*31 is composite, but r = 1. Such N's
are called Fermat pseudoprimes with respect to base a. 341 is a Fermat
pseudoprime with respect to base 2.

It turns out that Fermat pseudoprimes with respect to any fixed base
are uncommon. The chance of picking one at random from some large set
of N's is very small. Thus, in some sense, which is again a
complicated matter, if you get r = 1, N is "probably" prime.

A tactic you could use if you get r = 1 is to pick another base a and
repeat the calculation. If you get r = 1 again, try still another a.
Continue this until you either find a proof that N is composite, or
you decide that you couldn't possibly be unlucky enough to have an N
which is a Fermat pseudoprime to all the bases you used. Then declare
the number to be prime, and you will be wrong only rarely.

A flaw with the above tactic is that there exist numbers called
Carmichael numbers, for which, for all bases a such that N passes the
GCD test, r will equal 1. The smallest one is 561 = 3*11*17. Every
base a not divisible by 3, 11, or 17 will give r = 1. These are even
rarer than Fermat pseudoprimes with respect to a given base a, but
there are known to be infinitely many. If you happened to choose one
of these, you might try very many bases, getting r = 1 over and over,
then declare the number prime, and be wrong.

There are variations of the above method which get rid of the last
flaw, give you proofs of compositeness, but only probabilistic
statements about primality. If you need to know more about them,
write again.

If you want a true proof of primality, there are more complicated
methods which will do this, but I am quite sure the above is what you
remember reading about. The complicated methods can be proven to run
on a computer in a relatively short time, and produce a certificate of
primality which can be checked even faster. They could not, however,
be termed "simple" in most senses of the word!

-Doctor Rob, The Math Forum
 Check out our web site! ​ ​http://mathforum.org/dr.math/

Date: 12/18/97 at 10:36:38
From: Lynne & Dave Ware
Subject: Follow up question on testing for primes

Doctor Rob:

Thank you for your quick answer to my question.

I think I was looking for the true test of primality you mentioned in
your last paragraph. I think Ivars Peterson did cover some of the
theory on Fermat's little theorem. I also remember something about a
method he only mentioned that could be run on a computer. How can I
program my computer to do this complicated method?

I am working on a prime number program (in Pascal) that uses the sieve
method. I saw an answer on your web site about testing for primes. I
go further in simplification by only testing with prime numbers less
than the square of the numbers and only odd numbers. I want to be able
to cross check on its operation by using a check for primes. The
"simple method" looks too messy for large numbers as I am trying to
push my program to work up to 10 billion.

Dave Ware

http://mathforum.org/dr.math/
http://mathforum.org/dr.math/

Date: 12/18/97 at 13:22:02
From: Doctor Rob
Subject: Re: Follow up question on testing for primes

If you think the "simple method" is too messy for large numbers, then
you will really hate the more sophisticated ones. They are too
complicated to go into via e-mail, but I will point you to a
reference. See

Henri Cohen, _A Course in Computational Algebraic Number Theory_,
 Springer-Verlag, Graduate Texts in Mathematics 138, Chapter 9.

You should be able to find a copy in any medium-to-large university
library, and probably other places. You will need a background in
either algebraic number theory, or the theory of elliptic curves, to
understand why the algorithms work, but only a knowledge of
programming to implement them.

Here is another idea. Since your range is only up to 10^10 (as opposed
to 10^1000[!!]), here is an alternative. Use the Strong Compositeness
Test (below) with bases 2, 3, 5, and 7. If it fails all of these, and
is not equal to 3215031751, then it is prime.

The Strong Compositeness Test with Base a: To test a number N for
compositeness:

1. If GCD(a,N) > 1, stop and declare that N is composite.
2. Write N - 1 = 2^s*d, where d is odd.
3. Compute R, the remainder of a^d when divided by N. (Do this as
 described in the last message.)
4. If R = 1, stop and declare failure.
5. For i = 0, 1, ..., s-1, do the following:
 a. If R = N-1, stop and declare failure.
 b. Replace R with the remainder of R^2 when divided by N.
 c. If R = 1, stop and declare that N is composite.
6. Stop and declare N composite.

A number which fails the Strong Compositeness Test with Base a, yet is
composite, is called a "strong pseudoprime with respect to base a."
Every strong pseudoprime is a Fermat pseudoprime to the same base, but
the reverse is false. The smallest strong pseudoprime with respect to
base 2 is 2047.

 Theorem: The only number less than 2.5*10^10 which is a strong
 pseudoprime with respect to bases 2, 3, 5, and 7, is
 3215031751.

-Doctor Rob, The Math Forum
 Check out our web site! ​ ​http://mathforum.org/dr.math/

Appendix
Please maintain this License and Attribution information with any changes you make.
Where to get more information about this lab and the presentation that may go with it? Please
visit ​STEAMClown.org​ or ​jim.The.STEAM.Clown’s Google Site

Appendix A: License & Attribution
● This interpretation is primarily the Intellectual

Property of Jim Burnham, Top STEAM Clown,
at​ STEAMClown.org

● This presentation and content is distributed
under the​ Creative Commons License
CC-BY-NC-SA 4.0

● My best attempt to properly attribute, or
reference any other sources or work I have
used are listed in Appendix C

Appendix B: Coding License & Attribution
● This interpretation is primarily the Intellectual

Property of Jim Burnham, Top STEAM Clown,
at​ STEAMClown.org

● The programming code found in this
presentation or linked to on my Github site is
distributed under the:

○ GNU General Public License v3.0
○ European Union Public Licence​ EUPL

1.2 or later
● My best attempt to properly attribute, or

reference any other sources or work I have
used are listed in Appendix C

http://mathforum.org/dr.math/
http://mathforum.org/dr.math/
http://www.steamclown.org/
https://sites.google.com/view/steam-clown-mechatronics/home
http://steamclown.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://steamclown.org/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://eupl.eu/
https://eupl.eu/

Appendix C: Primary Sources & Attribution for Material Used

●

