

STEAM CLOWNTM PRODUCTIONS

CAPACITORS

Page 2

STEAM CLOWNTM PRODUCTIONS

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

SEE APPENDIX A, FOR LICENSING & ATTRIBUTION INFORMATION

by-nc-sa-3.0

https://creativecommons.org/licenses/by-nc-sa/3.0/

https://creativecommons.org/faq/#what-does-some-rights-reserved-mean

WHAT YOU WILL KNOW...

• Prior Knowledge

- How a Bread Board Works
- How to Use a DMM to measure voltage
- What You Will Be Able To Do Or Know
 - Calculate for Time in and Resistor/Capacitor network
 - Build a R/C circuit and measure the time to charge/discharge
 - Be able to describe how an R/C circuit works

CAPACITORS - INTRODUCTION

- A capacitor is a two-terminal, electrical component that can **store** and **hold** energy
- It is a **passive** components
 - Fundamental, like Resistors & Inductors
 - Almost all circuits have a capacitor in it.

LIKEALITTLE BATTERY...

Capacitors have the ability to store energy

- Like a fully charged electric battery
- Common applications include:
 - Local energy storage
 - Voltage spike suppression
 - Complex signal filtering.

<u>https://electronics.stackexchange.com/questions/183</u>
<u>01/how-does-a-capacitor-block-dc</u>

<u>https://learn.sparkfun.com/tutorials/capacitors</u>

CAPACITANCE - FARADS

- The unit of capacitance is F (Farads)
- A capacitor has a capacitance of 1 farad if a charge of 1 coulomb increases the potential difference between its plates by 1 volt
- The farad is coulomb/volt
- The farad is much too big for most practical purposes; microfarads, nanofarads, and picofarads are usually used.

READING CAPACITORS

- $1\mu F = 1^{-6}$ Farads
- $1\mu F = .000001 Farads$
- $100000\mu F = 1$ Farads

Microfarad [µF]	Farad [F]
0.01 μF	1.0E-8 F
0.1 μF	1.0E-7 F
1 μF	1.0E-6 F
2 μF	2.0E-6 F
3 μF	3.0E-6 F
5 μF	5.0E-6 F
10 µF	1.0E-5 F
20 µF	2.0E-5 F
50 μF	5.0E-5 F
100 μF	0.0001 F
1000 μF	0.001 F

CLOWN™

© Copyright 2017 STEAM Clown™

TIME CONSTANT T=RC

- t = RC
 - Where R is Ohms and C is FARADS

μF		Farads
	100µF	.0001F
	10µF	.00001F
	1μF	.000001F
	.1µF	.000001F
	.01µF	.0000001F
•	001µF	.00000001F

You need to convert any μF to F... so just move the decimal point to the left 6 places

TIME CONSTANT T=RC

- t = RC
 - Where R is Ohms and C is FARADS

t=RC t = 100μ F x 100KΩ t = .0001F x 100KΩ t = 10 seconds

μF	Farads
100µF	.0001F
10µF	.00001F
1µF	.000001F
.1µF	.0000001F
.01µF	.00000001F
.001µF	.000000001F

THE TIME CONSTANT...

- is the time taken (in seconds) by the capacitor C that is fed from a resistor R to charge to a certain level.
- The capacitor will charge to 63% of the final voltage in one time constant
- 85% in two time constants
- 100% in five time constants.

If you graphed the % charge against time constant, the result is exponential. That is:

ALGEBRA... SOLVE FOR CAND R

 $t = RC \qquad \qquad t = RC$

 $\frac{t}{R} = \frac{RC}{R}$

 $\frac{t}{R} = C$

 $C = \frac{t}{R}$

 $\frac{t}{C} = \frac{RC}{C}$

 $\frac{t}{C} = R$

 $R = \frac{1}{C}$

t

STEAM CLOWN™ & Squeaky Hinge PRODUCTIONS © Copyright 2017 STEAM Clown™

Page 15

CHECK YOUR MATH TO THE REAL WORLD...

- Pick a C₁ and a Time Constant for R₁ and another Time Constant for R₂
- Calculate R₁ and R₂
- Build it, and measure your Time Constants

CHECK YOUR MATH TO THE REAL WORLD...

- Pick a C_1 could be the same 100µF cap
- Pick a Time Constant for R₁
- Calculate $R_1 = t/C$
- Build it, and measure your Time Constants

CHECK YOUR MATH TO THE REAL WORLD...

- Pick a C_1 could be the same 100µF cap
- Pick a Time Constant for R₂
- Calculate $R_2 = t/C$
- Build it, and measure your Time Constants

STEAM CLOWNTM PRODUCTIONS

APPENDIX

Page 19

APPENDIX A: LICENSE & ATTRIBUTION

- This interpretation is primarily the Intellectual Property of Jim Burnham, Top STEAM Clown, at STEAMClown.org
- This presentation and content is distributed under the Creative Commons License CC-by-nc-sa-3.0
- My best attempt to properly attribute, or reference any other sources or work I have used are listed in Appendix B

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and <u>indicate if changes were made</u>. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or <u>technological measures</u> that legally restrict others from doing anything the license permits.

APPENDIX B: ATTRIBUTION FOR SOURCES USED

• SparkFun – Capacitors

- <u>https://learn.sparkfun.com/tutorials/capacitors</u>
- Tronixstuff
 - <u>https://tronixstuff.com/2010/06/11/education-the-rc-circuit-2/</u>

STEAM CLOWNTM PRODUCTIONS

REERENCESLDES

Page 22

• SS

http://micro.magnet.fsu.edu/electromag/java/capacitor/index.html

https://nationalmaglab.org/education/magnet-academy/watch-play/interactive/bullet-speed

