
Towards a distributed and real-time framework for robots: Evaluation
of ROS 2.0 communications for real-time robotic applications

Carlos San Vicente Gutiérrez, Lander Usategui San Juan,
Irati Zamalloa Ugarte, Víctor Mayoral Vilches

Erle Robotics S.L.
Vitoria-Gasteiz,

Álava, Spain

Abstract— In this work we present an experimental setup to
show the suitability of ROS 2.0 for real-time robotic applica-
tions. We disclose an evaluation of ROS 2.0 communications in
a robotic inter-component (hardware) communication case on
top of Linux. We benchmark and study the worst case latencies
and missed deadlines to characterize ROS 2.0 communications
for real-time applications. We demonstrate experimentally how
computation and network congestion impacts the communica-
tion latencies and ultimately, propose a setup that, under certain
conditions, mitigates these delays and obtains bounded traffic.

I. INTRODUCTION

In robotic systems, tasks often need to be executed with strict
timing requirements. For example, in the case of a mobile
robot, if the controller has to be responsive to external events,
an excessive delay may result in non-desirable consequences.
Moreover, if the robot was moving with a certain speed and
needs to avoid an obstacle, it must detect this and stop or
correct its trajectory in a certain amount of time. Otherwise,
it would likely collide and disrupt the execution of the
required task. These kind of situations are rather common in
robotics and must be performed within well defined timing
constraints that usually require real-time capabilities1. Such
systems often have timing requirements to execute tasks or
exchange data over the internal network of the robot, as it
is common in the case of distributed systems. This is, for
example, the case of the Robot Operating System (ROS)[1].
Not meeting the timing requirements implies that, either the
system’s behavior will degrade, or the system will lead to
failure.
Real-time systems can be classified depending on how cri-
tical to meet the corresponding timing constraints. For hard
real-time systems, missing a deadline is considered a system
failure. Examples of real-time systems are anti-lock brakes
or aircraft control systems. On the other hand, firm real-time
systems are more relaxed. An information or computation
delivered after a missing a deadline is considered invalid,
but it does not necessarily lead to system failure. In this
case, missing deadlines could degrade the performance of
the system. In other words, the system can tolerate a certain
amount of missed deadlines before failing. Examples of firm

1Note that there is a relevant difference between having well defined
deadlines and having the necessity to meet such deadlines in a strict manner,
which is what real-time systems deliver.

real-time systems include most professional and industrial
robot control systems such as the control loops of collabora-
tive robot arms, aerial robot autopilots or most mobile robots,
including self-driving vehicles.
Finally, in the case of soft real-time, missed deadlines
-even if delivered late- remain useful. This implies that
soft real-time systems do not necessarily fail due to missed
deadlines, instead, they produce a degradation in the
usefulness of the real-time task in execution. Examples of
soft-real time systems are telepresence robots of any kind
(audio, video, etc.).

As ROS became the standard software infrastructure for
the development of robotic applications, there was an
increasing demand in the ROS community to include
real-time capabilities in the framework. As a response, ROS
2.0 was created to be able to deliver real-time performance,
however, as covered in previous work [2] and [3], the
ROS 2.0 itself needs to be surrounded with the appropriate
elements to deliver a complete distributed and real-time
solution for robots.

For distributed real-time systems, communications need
to provide Quality of Services (QoS) capabilities in order
to guarantee deterministic end-to-end communications.
ROS 2 communications use Data Distribution Service
(DDS) as its communication middleware. DDS contains
configurable QoS parameters which can be tuned for
real-time applications. Commonly, DDS distributions use
the Real Time Publish Subscribe protocol (RTPS) as a
transport protocol which encapsulates the well known User
Datagram Protocol (UDP). In Linux based systems, DDS
implementations typically use the Linux Networking Stack
(LNS) for communications over Ethernet.

In previous work [2], we analyzed the use of layer 2
Quality of Service (QoS) techniques such as package
prioritization and Time Sensitive Networking (TSN)
scheduling mechanisms to bound end-to-end latencies
in Ethernet switched networks. In [3], we analyzed the
real-time performance of the LNS in a Linux PREEMPT-RT
kernel and observed some of the current limitations for

ar
X

iv
:1

80
9.

02
59

5v
1 

 [
cs

.R
O

] 
 7

 S
ep

 2
01

8



deterministic communications over the LNS in mixed-critical
traffic scenarios. The next logical step was to analyze the
real-time performance of ROS 2.0 communications in
a PREEEMPT-RT kernel over Ethernet. Previous work
[4] which investigated the performance of ROS 2.0
communication showed promising results and discussed
future improvements. However, the mentioned study
does not explore the suitability of ROS 2.0 for real-time
applications and the evaluation was not performed on an
embedded platform.

In this work, we focus on the evaluation of ROS
2.0 communications in a robotic inter-component
communication use-case. For this purpose, we are going
to present a setup and a set of benchmarks where we will
measure the end-to-end latencies of two ROS 2.0 nodes
running in different static load conditions. We will focus
our attention on worst case latencies and missed deadlines
to observe the suitability of ROS 2.0 communications for
real-time applications. We will also try to show the impact
of different stressing conditions in ROS 2.0 traffic latencies.
Ultimately, we attempt to find a suitable configuration to
improve determinism of ROS 2.0 and establish the limits
for such setup in an embedded platform.

The content below is structured as follows: section II
presents some background of ROS 2.0 and how its
underlying communication middleware is structured.
Section III shows the experimental results obtained while
using four different approaches. Finally, Section IV provides
a discussion of the results.

II. BACKGROUND

Fig. 1: Overview of ROS 2 stack for machine to machine communications
over Ethernet

ROS is a framework for the development of robot appli-
cations. A toolbox filled with utilities for robots, such as
a communication infrastructure including standard message
definitions, drivers for a variety of software and hardware

components, libraries for diagnostics, navigation, manipula-
tion and many more. Altogether, ROS simplifies the task of
creating complex and robust robot behavior across a wide
variety of robotic platforms. ROS 2.0 is the new version of
ROS which extends the initial concept (originally meant for
purely research purposes) and aims to provide a distributed
and modular solution for situations involving teams of robots,
real-time systems or production environments, amidst others.
Among the technical novelties introduced in ROS 2.0,
Open Robotics explored several options for the ROS 2.0
communication system. They decided to use the DDS
middleware due to its characteristics and benefits compared
to other solutions. As documented in [5], the benefit of
using an end-to-end middleware, such as DDS, is that there
is less code to maintain. DDS is used as a communications
middleware in ROS 2.0 and it typically runs as userspace
code. Even though DDS has specified standards, third
parties can review audit, and implement the middleware
with varying degrees of interoperability.

As pointed out in the technical report [6], to have real-
time performance, both a deterministic user code and an
real-time operating system are needed. In our case, we will
use a PREEMPT-RT patched Linux kernel as the core of
our operating system for the experiments. Following the
programming guidelines of the PREEMPT-RT and with a
suitable kernel configuration, other authors[7] demonstrated
that it is possible to achieve system latency responses
between 10 and 100 microseconds.

Normally, by default, DDS implementations use the Linux
Network Stack (LNS) as transport and network layer. This
makes the LNS a critical part for ROS 2.0 performance.
However, the network stack is not optimized for bounded
latencies but instead, for throughput at a given moment.
In other words, there will be some limitations due to the
current status of the networking stack. Nevertheless, LNS
provides QoS mechanisms and thread tuning which allows to
improve the determinism of critical traffic at the kernel level.

An important part of how the packets are processed in the
Linux kernel relates actually to how hardware interrupts
are handled. In a normal Linux kernel, hardware interrupts
are served in two phases. In the first, an Interrupt Service
Routine (ISR) is invoked when an interrupt fires, then,
the hardware interrupt gets acknowledged and the work
is postponed to be executed later. In a second phase,
the soft interrupt, or “bottom half” is executed later to
process the data coming from the hardware device. In
PREEMPT-RT kernels, most ISRs are forced to run in
threads specifically created for the interrupt. These threads
are called IRQ threads [8]. By handling IRQs as kernel
threads, PREEMPT-RT kernels allow to schedule IRQs
as user tasks, setting the priority and CPU affinity to be
managed individually. IRQ handlers running in threads can
themselves be interrupted so the latency due to interrupts is



mitigated. For our particular interests, since our application
needs to send critical traffic, it is possible to set the priority
of the Ethernet interrupt threads higher than other IRQ
threads to improve the network determinism.

Another important difference between a normal and a
PREEMPT-RT kernel is within the context where the
softirq are executed. Starting from kernel version 3.6.1-rt1
on, the soft IRQ handlers are executed in the context of
the thread that raised that Soft IRQ [9]. Consequently,
the NET_RX soft IRQ, which is the softirq for receiving
network packets, will normally be executed in the context of
the network device IRQ thread. This allows a fine control of
the networking processing context. However, if the network
IRQ thread is preempted or it exhausts its NAPI2 weight
time slice, it is executed in the ksoftirqd/n (where n is the
logical number of the CPU).

Processing packets in ksoftirqd/n context is troublesome for
real-time because this thread is used by different processes
for deferred work and can add latency. Also, as the ksoftirqd
thread runs with SCHED_OTHER policy, it can be easily
preempted. In practice, the soft IRQs are normally executed
in the context of the Ethernet IRQ threads and in the
ksoftirqd/n thread, for high network loads and under heavy
stress (CPU, memory, I/O, etc.). The conclusion here is that,
in normal conditions, we can expect reasonable deterministic
behavior, but if the network and the system are loaded, the
latencies can increase greatly.

III. EXPERIMENTAL SETUP AND RESULTS

This section presents the setup used to evaluate the real-time
performance of ROS 2.0 communications over Ethernet in
a PREEMPT-RT patched kernel. Specifically, we measure
the end-to-end latencies between two ROS 2.0 nodes in
different machines. For the experimental setup, we used
a GNU/Linux PC and an embedded device which could
represent a robot controller (RC) and a robot component
(C) respectively.

The PC used for the tests has the following characteristics:
Processor: Intel(R) Core(TM) i7-8700K CPU @
3.70GHz (6 cores).
OS: Ubuntu 16.04 (Xenial).
ROS 2.0 version: ardent.
Kernel version: 4.9.30.
PREEMPT-RT patch: rt21.
Link capacity: 100/1000 Mbps, Full-Duplex.
NIC: Intel i210.

In the other hand, the main characteristics of the embedded
device are:

Processor: ARMv7 Processor (2 cores).

2‘New API’ or NAPI for short is an extension to the device driver packet
processing framework, which is designed to improve the performance of
high-speed networking.

ROS 2 version: ardent
Kernel version: 4.9.30.
PREEMPT-RT patch: rt21.
Link capacity: 100/1000 Mbps, Full-Duplex.

The RC and the C are connected point to point using a
CAT6e Ethernet wire as shown in figure 2.

Fig. 2: Experimental setup overview.

A. Round-trip test setup

The communications between the robot controller and the
robot component are evaluated with a round-trip time (RTT)
test, also called ping-pong test. We use a ROS 2.0 node as
the client in RC and a ROS 2.0 node as the server in C.
The round-trip latency is measured as the time it takes for a
message to travel from the client to the server, and from the
server back to the client. The message latency is measured
as the difference between the time-stamp taken before
sending the message (T1) in the client and the time-stamp
taken just after the reception of the message in the callback
of client (T2), as shown in figure 3.

Fig. 3: Graphical presentation of the measured DDS round-trip latency.
T1 is the time-stamp when data is send from the DDS publisher and T 2
is the time-stamp when data is received at the DDS publisher. Round-trip
latency is defined as T2 - T1.

The client creates a publisher that is used to send a message
through a topic named ‘ping’. The client also creates a
subscriber, which waits for a reply in a topic named ‘pong’.
The server creates a subscriber which waits for the ‘ping’
topic and a publisher that replies the same received message
through the ‘pong’ topic. The ‘ping’ and ‘pong’ topics are
described by a custom message with an UINT64 used to



write the message sequence number and a U8[] array to
create a variable payload.

For the tests performed in this work, we used a publishing
rate of 10 milliseconds. The sending time is configured
by waking the publisher thread with an absolute time.
If the reply arrives later than 10 milliseconds and the
current sending time has expired, the message is published
in the next available cycle. If there is no reply in 500
milliseconds, we consider that the message was lost.
Also, if the measured round-trip latency is higher than 10
milliseconds, we consider it a missed deadline, as shown in
figure 4.

Fig. 4: Time plot example with a 10 millisecond deadline and missed
deadlines. (The image corresponds to Test2.D with DDS2)

For all the experiments we have used the same ROS 2.0
QoS profile. We followed the guidelines described in the
inverted pendulum control of the ROS 2.0 demos [10]:
best-effort reliability, KEEP_LAST history and a history
depth of 1. This configuration is not optimized for reliability
but for low latencies. One of the motivations behind this
configuration is that the reliable mode can potentially block,
which is an unwanted behavior in real-time threads.

All the experiments are run using three different DDS
implementations.

B. Experimental results

B.1. Test 1. System under load: In this test, we want to
explore how communications get affected when the system
is under heavy load. Additionally, we aim to show how a
proper real-time configuration can mitigate these effects.

For the ‘ping’ and ‘pong’ topics messages, we use a payload
of 500 Bytes 3. To generate load in the system we use the

3This makes a total packet size of 630 Bytes, summing the sequence
number sub-message and UDP and RTPS headers.

tool ‘stress’ generating CPU stress, with 8 CPU workers,
8 VM workers, 8 I/O workers, and 8 HDD workers in
the PC and 2 workers per stress type in the embedded device.

We run the following tests:

Test1.A: System idle with no real-time settings.
Test1.B: System under load with no real-time settings.
Test1.C: System idle with real-time settings.
Test1.D: System under load without real-time settings.

In the experiment Test1.A we run the round-trip test in
normal conditions (Idle), that is, no other processes apart
from the system default are running during the test. Figure
5a shows stable latency values with a reasonable low
jitter (table I). We get latencies higher than 4 milliseconds
for an specific DDS, which means that we probably can
expect higher worst case latencies with a longer test duration.

In the experiment Test1.B, we run the round-trip test with
the system under load. Figure 5b shows how, in this case,
latencies are severely affected resulting in a high number of
missed deadlines (table III). This happens mainly because
all the program threads are running with SCHED_OTHER
scheduling and are contending with the stress program for
CPU time. Also, some latencies might also be caused due to
memory page faults causing the memory not to be locked.
The results show how sensitive non-real time processes are
to system loads. As we wait until the arrival of the messages
to send the next and we are fixing a 10 minutes duration
for the test, the number of messages sent during each test
might be different if deadlines are missed.

In the experiment Test1.C we repeat the round-trip test
configuring the application with real-time properties. The
configuration used includes memory locking, the use of the
TSLF allocators for the ROS 2.0 publishers and subscriptors,
as well as running the round-trip program threads with
SCHED_FIFO scheduling and real-time priorities. The
configuration of the DDS threads has been done in a
different manner, depending on each DDS implementation.
Some DDS implementations allowed to configure their
thread priorities using the Quality of Service (QoS) profiles
(through XML files), while others did not. In the cases
where it was feasible, it allowed a finer real-time tuning
since we could set higher priorities for the most relevant
threads, as well as configuring other relevant features such
memory locking and buffer pre-allocation. For the DDS
implementations in which it was not possible to set the
DDS thread priorities, we set a real-time priority for the
main thread, so that all the threads created did inherit this
priority.

Figure 5d shows a clear improvement for all the DDS
implementations when comparing to case Test1.B (table IV),
where we did not use any real-time settings. Henceforth, all
the tests in the following sections are run using the real-time



configurations.
B.2. Test 2. Concurrent traffic: In this second test, we
want to observe the impact of non-critical traffic in the
round-trip test measurements. We generate certain amount of
traffic from RC to C and from C to RC using the tool iperf. 4

In this experiment, we do not prioritize the traffic, which
means the concurrent traffic will use the same Qdisc and
interrupt threads than the critical traffic. In other words,
we mix both non-critical and critical traffic together and
analyze the impact of simply doing so.

We run the test generating 1 Mbps, 40 Mbps and 80 Mbps
concurrent traffic with and without stressing the system:

Test2.A: System idle with 1 Mbps concurrent traffic.
Test2.B: System under load with 1 Mbps concurrent
traffic.
Test2.C: System idle with 40 Mbps concurrent traffic.
Test2.D: System under load with 40 Mbps concurrent
traffic.
Test2.E: System idle with 80 Mbps concurrent traffic.
Test2.F: System under load with 80 Mbps concurrent
traffic.

For the non stressed cases Test2.A, Test2.C and Test2.E, we
observe that the concurrent traffic does not affect the test
latencies significantly (figures 6a, 6c, 6e). When we stress
the system, we can see how for 1 Mbps and 40 Mbps the
latencies are still under 10 milliseconds. However, for 80
Mbps, the communications are highly affected resulting in
a high number of lost messages and missed deadlines.

As we explained in II, depending on the network load,
packets might be processed in the ksoftirqd threads. Because
these threads run with no real-time priority, they would
be highly affected by the system load. For this reason, we
can expect higher latencies when both, concurrent traffic
and system loads, are combined. For high network loads,
the context switch would occur more frequently or even
permanently. For medium network loads, the context switch
happens intermittently with a frequency that correlates
directly with the exact network load circumstances at each
given time.

B.3. Test 3. Increasing message payload size: In this third
experiment, we increase the ‘Ping’ topic message payload
to observe the determinism for higher critical bandwidth
traffic. By increasing the payload, messages get fragmented.
This implies that higher bandwidth is used and, as it
happened in the previous testB.2, depending on the traffic
load, the packets may be processed in the ksoftirqd threads
or not. Once again, we expect this action to have negative
consequences to bound latencies.

4When the system was stressed the embedded devices were not capable
of generating more than 20 Mbps steadily.

For this test we use two different payload sizes: 32 Kbytes
and 128 Kbytes.

Test3.A: System idle with 32 Kbytes payload.
Test3.B: System under load with 32 Kbytes payload.
Test3.C: System under load with 128 Kbytes payload.

For Test3.A, 32 Kbytes and the system stressed, we can
start observing some high latencies (figure 7b), however
there are no missed deadlines and message losses during a
10 minute duration test. On the other hand, for 128 Kbytes,
we start observing missed deadlines and even packet loss in
a 10 minutes test window. (XV).

In the previous experiment B.2, non-critical traffic was the
cause of high latencies. As the context switch from the
Ethernet IRQ thread to the ksoftirqd threads occurs for
a certain amount of consecutive frames, in this case the
critical traffic is causing by its own the context switch. This
must be taken into account when sending critical messages
with high payloads.

It is worth noting, that for this experiment, the DDS QoS
were not optimized for throughput. Also, the publishing rates
could not be maintained in a 10 millisecond window, thereby
the missed deadlines statistics have been omitted in the plots.
B.4. Test 4. Tuning the kernel threads priorities: As
suspected, the main problems demonstrated previously
in B.2 and B.3 were caused by the packet processing
(switching) in the ksoftirqd threads. In this experiment,
we decided to tune the kernel threads to mitigate the problem.

We configured the threads with the following priorities:
Ethernet IRQ threads: priority 90
ROS 2 executor threads: priority 80
DDS threads: priority 70-80 5

ksoftirqd/n threads: 60
We repeated Test2.F (System under load with 80 Mbps
concurrent traffic) using the new configuration.

Test4.A: System under load with 80 Mbps concurrent
traffic.

Comparing to Test2.F (Figures 6f and 8) we observe a clear
improvement with the new configuration. We observe almost
no missed deadlines, nor message loss for a 10 minutes
duration test. This suggests that the high latencies observed
in B.2 and B.3 were caused because of the lack of real-time
priority of ksoftirqd when there is a high bandwidth traffic
in the networking stack.

B.5. Test 5. Long term test: All the previous experiments
were run within a 10 minute duration window. While this
duration can be enough to evaluate the performance and
identify some problems, it is usually not enough to observe
the worst cases for a given configuration. Because some
delays may appear just when specific events happen, not

5Some DDS threads were configured with specific priorities using the
QoS vendor profile XML



(a) System idle. (b) System under load.

(c) System idle with RT settings. (d) System under load with RT settings.

Fig. 5: Impact of RT settings under different system load. a) System without additional load without RT settings. b) System under load without RT
settings. c) System without additional load and RT settings. d) System under load and RT settings.

observing missed deadlines does not guarantee that it cannot
happen in the long term. Therefore, we decided to repeat
the test from experiment Test2.C for a 12 hour window.

Test5.A: System under load with 1 Mbps concurrent
traffic. Duration 12 hours.
Test5.B: System under load with 40 Mbps concurrent
traffic. Duration 12 hours.

For 40 Mbps we observed some message lost that we did
not observe in a 10 minute long test. However, the number
of messages lost is reasonably low and depending on how
critical is the application, it can be considered acceptable.
For 1 Mbps we did not observe any message loss, nor a
relevant amount of missed deadlines. We did observe a very
low jitter when compared to the 40 Mbps case.

IV. CONCLUSION AND FUTURE WORK

In this work, we presented an experimental setup to
show the suitability of ROS 2.0 for real-time robotic
applications. We have measured the end-to-end latencies of
ROS 2.0 communications using different DDS middleware
implementations in different stress conditions. The results
showed that a proper real-time configuration of the ROS 2.0
framework and DDS threads reduces greatly the jitter and

worst case latencies.

We also observed the limitations when there is non-
critical traffic in the Linux Network Stack. Some of these
problems can be avoided or minimized by configuring the
network interrupt threads and using Linux traffic control
QoS methods. Based on our results, we conclude that it
seems possible to achieve firm and soft real-time Ethernet
communications with mixed-critical traffic by using the
Linux Network Stack but not hard real-time due to the
observed limitations. There is ongoing work in the Linux
kernel which may eventually improve the determinism in
the Linux Network Stack [11], [12] [13].

For the moment, the best strategies to optimize ROS 2.0
communications for real-time applications are to a) configure
the application with real-time settings, b) configure the
kernel threads accordingly to the application settings and
c) limit the network and CPU usage of each one of the
machines involved in the communication.

Regarding the DDS middleware implementations evaluated,
we observed differences in the performance and on the
average latencies. These differences may be caused by a



(a) System with 1 Mbps concurrent traffic and RT settings. (b) System under load with 1 Mbps concurrent traffic and RT settings.

(c) System with 40 Mbps concurrent traffic and RT settings. (d) System under load with 40 Mbps concurrent traffic and RT
settings.

(e) System with 80 Mbps concurrent traffic and RT settings. (f) System under load with 80 Mbps concurrent traffic and RT
settings.

Fig. 6: Impact of concurrent traffic with RT settings. a) System without additional load and 40 Mbps of concurrent traffic. b) System under load and 40
Mbps of concurrent traffic. c) System without additional load and 80 Mbps of concurrent traffic. d) System under load and 80 Mbps of concurrent traffic.

variety of reasons such as the DDS implementation itself,
but also because of the ROS 2.0 RMW layer or even by
the configurations used for the experiments. Regardless of
the performance, we observed a similar behavior in terms
of missed deadlines and loss messages which confirms the
interest of DDS for real-time scenarios.
In future work, we will evaluate several methods to limit the
network and CPU usage. One way to achieve this is using

the Linux control groups (cgroups) to isolate the application
in exclusive CPUs. Using cgroups, it is possible to set
the priority of the application traffic using ‘net_prio’. This
would help to isolate critical traffic from non-critical traffic.
Also, we will evaluate the impact of non-critical traffic from
another ROS 2.0 node in the same process or from the same
node. For that purpose, we will focus on how ROS 2.0
executors and the DDS deal with mixed-critical topics.



(a) 32 KB of payload with RT settings. (b) System under load, 32 KB of payload and RT settings.

Fig. 7: Impact of the different payload size under different system conditions. a) 32 KB of payload without additional system load. b) 32 KB of payload
under system load.

Fig. 8: System under load with 80 Mbps concurrent traffic and RT settings and kernel thread tuning.

(a) System under load with 1 Mbps concurrent traffic and RT settings. (b) System under load with 40 Mbps concurrent traffic and RT
settings.

Fig. 9: Impact of concurrent traffic with RT settings in a long term test of 12 hours duration.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[2] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches,
“Time-sensitive networking for robotics,” CoRR, vol. abs/1804.07643,
2018. [Online]. Available: http://arxiv.org/abs/1804.07643

[3] C. S. V. Gutiérrez, L. Usategui San Juan, I. Zamalloa Ugarte, and
V. Mayoral Vilches, “Real-time Linux communications: an evaluation
of the Linux communication stack for real-time robotic applications,”
ArXiv e-prints, Aug. 2018.

[4] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the performance
of ros2,” in 2016 International Conference on Embedded Software
(EMSOFT), Oct 2016, pp. 1–10.

[5] “Ros 2.0 design,” http://design.ros2.org/, accessed: 2018-07-27.

http://arxiv.org/abs/1804.07643
http://design.ros2.org/


[6] “Introduction to Real-time Systems,” http://design.ros2.org/articles/
realtime_background.html, accessed: 2018-04-12.

[7] F. Cerqueira and B. B. Brandenburg, “A comparison of scheduling
latency in linux, preempt rt, and litmus rt.”

[8] J. Edge, “Moving interrupts to threads,” October 2008, [Accessed:
2018-04-12]. [Online]. Available: https://lwn.net/Articles/302043/

[9] J. Corbet, “Software interrupts and realtime,” October 2012,
[Accessed: 2018-04-12]. [Online]. Available: https://lwn.net/Articles/
520076/

[10] “ROS 2 Pendulum control demo,” https://github.com/ros2/demos/tree/
master/pendulum_control/, accessed: 2018-04-12.

[11] “XDP (eXpress Data Path) documentation,” https://lwn.net/Articles/
701224/, accessed: 2018-04-12.

[12] “Introducing AF_XDP support,” https://lwn.net/Articles/750293/, ac-
cessed: 2018-04-12.

[13] “Scheduled packet Transmission: ETF,” https://lwn.net/Articles/
758592/, accessed: 2018-04-12.

http://design.ros2.org/articles/realtime_background.html
http://design.ros2.org/articles/realtime_background.html
https://lwn.net/Articles/302043/
https://lwn.net/Articles/520076/
https://lwn.net/Articles/520076/
https://github.com/ros2/demos/tree/master/pendulum_control/
https://github.com/ros2/demos/tree/master/pendulum_control/
https://lwn.net/Articles/701224/
https://lwn.net/Articles/701224/
https://lwn.net/Articles/750293/
https://lwn.net/Articles/758592/
https://lwn.net/Articles/758592/


TABLE I: Round-trip latency results: System idle

System Idle
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 827 981 2007 0/60001 0/60001
DDS 2 1059 1237 4216 0/60001 0/60001
DDS 3 1105 1335 3101 0/60001 0/60001

TABLE II: Round-trip latency results: System idle with RT settings

System idle with RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 1079 1329 2141 0/60001 0/60001
DDS 2 1301 1749 2161 0/60001 0/60001
DDS 3 1394 1809 2735 0/60001 0/60001

TABLE III: Round-trip latency results: System under load

System under load
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 810 2524 29481 233/56297 0/56297
DDS 2 1082 2150 26764 236/58905 0/58905
DDS 3 1214 2750 22492 133/58822 0/58822

TABLE IV: Round-trip latency results: System under load with RT settings

System under load with RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 769 1197 1823 0/60001 0/60001
DDS 2 1008 1378 2774 0/60001 0/60001
DDS 3 1082 1568 2092 0/60001 0/60001



TABLE V: Round-trip latency results: System with 40 Mbps concurrent traffic and RT settings

System with 40 Mbps concurrent traffic and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 976 1165 1930 0/60001 0/60001
DDS 2 1340 1628 2153 0/60001 0/60001
DDS 3 1343 1582 2151 0/60001 0/60001

TABLE VI: Round-trip latency results: System under load with 40 Mbps concurrent traffic and RT settings

System under load with 40 Mbps concurrent traffic and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 1037 1283 3947 0/60001 0/60001
DDS 2 1358 1744 4825 0/60001 0/60001
DDS 3 1458 1835 4836 0/60001 0/60001

TABLE VII: Round-trip latency results: System with 80 Mbps concurrent traffic and RT settings

System with 80 Mbps concurrent traffic and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 939 1157 1553 0/60001 0/60001
DDS 2 1333 1603 2122 0/60001 0/60001
DDS 3 1320 1607 2198 0/60001 0/60001

TABLE VIII: Round-trip latency results: System under load with 80 Mbps concurrent traffic and RT settings

System under load with 80 Mbps concurrent traffic and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 1011 1383 59762 240/36315 1230/36315
DDS 2 1375 1805 57138 224/29613 1575/29613
DDS 3 1388 1803 47058 119/51569 451/51569

TABLE IX: Round-trip latency results: System under load with 80 Mbps concurrent traffic and RT settings (ksoftirqd prio)

System under load with 80 Mbps concurrent traffic and RT settings (ksoftirqd prio)
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 991 1273 3509 0/60000 0/60000
DDS 2 1365 1769 6405 0/60000 2/60000
DDS 3 1382 1759 6274 0/60000 0/60000

TABLE X: Round-trip latency results: 32 KB of payload with RT settings

32 KB of payload with RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 2808 3226 3839 0/60001 0/60001
DDS 2 4218 5505 6012 0/30000 0/30000
DDS 3 10006 11655 12722 0/30001 0/30001

TABLE XI: Round-trip latency results: System under load, 32 KB of payload and RT settings

System under load, 32 KB of payload and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 2913 3292 4961 0/60001 0/60001
DDS 2 3991 4664 7175 0/30000 0/30000
DDS 3 9828 10809 35285 3/30000 0/30000

TABLE XII: Round-trip latency results: System under load, 128 KB of payload and RT settings

System under load, 128 KB of payload and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 9000 9369 179909 2/30000 75/30000
DDS 2 11511 14151 176074 1991/18241 1192/18241
DDS 3 35832 37238 48398 0/14997 0/14997

TABLE XIII: Round-trip latency results: System under load with 40 Mbps concurrent traffic and RT settings 12h

System under load with 40 Mbps concurrent traffic and RT settings 12h
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 985 1283 4942 0/4319751 3/4319751
DDS 2 1319 1808 6075 0/4320001 0/4320001
DDS 3 1398 1803 6906 0/4320000 5/4320000



TABLE XIV: Round-trip latency results: System with 1 Mbps concurrent traffic and RT settings

System with 1 Mbps concurrent traffic and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 1048 1353 1587 0/60001 3/60001
DDS 2 1418 1821 2274 0/60001 0/60001
DDS 3 1336 1781 2089 0/60001 0/60001

TABLE XV: Round-trip latency results: System under load with 1 Mbps concurrent traffic and RT settings

System under load with 1 Mbps concurrent traffic and RT settings
Min(µs) Avg(µs) Max(µs) Missed deadlines Message loss

DDS 1 1015 1310 1670 0/60001 0/60001
DDS 2 1409 1726 2411 0/60001 0/60001
DDS 3 1443 1788 2603 0/60001 0/60001


	I Introduction
	II Background
	III Experimental setup and results
	A Round-trip test setup
	B Experimental results
	B.1 Test 1. System under load
	B.2 Test 2. Concurrent traffic
	B.3 Test 3. Increasing message payload size
	B.4 Test 4. Tuning the kernel threads priorities
	B.5 Test 5. Long term test


	IV Conclusion and future work
	References

