
Real-time Linux communications: an evaluation of the Linux
communication stack for real-time robotic applications

Carlos San Vicente Gutiérrez, Lander Usategui San Juan,
Irati Zamalloa Ugarte, Víctor Mayoral Vilches

Erle Robotics S.L.
Vitoria-Gasteiz,

Álava, Spain

Abstract— As robotics systems become more distributed, the
communications between different robot modules play a key
role for the reliability of the overall robot control. In this paper,
we present a study of the Linux communication stack meant
for real-time robotic applications. We evaluate the real-time
performance of UDP based communications in Linux on multi-
core embedded devices as test platforms. We prove that, under
an appropriate configuration, the Linux kernel greatly enhances
the determinism of communications using the UDP protocol.
Furthermore, we demonstrate that concurrent traffic disrupts
the bounded latencies and propose a solution by separating
the real-time application and the corresponding interrupt in a
CPU.

I. INTRODUCTION

The Ethernet communication standard is widely used
in robotics systems due to its popularity and reduced
cost. When it comes to real-time communications, while
historically Ethernet represented a popular contender, many
manufacturers selected field buses instead. As introduced
in previous work [1], we are starting to observe a change
though. With the arrival of the ‘Time Sensitive Networking’
(TSN) standards, Ethernet is expected to gain wider
adoption for real-time robotic applications. There are
currently several communication technologies based on
the Ethernet protocols. Some protocols such as Profinet
RT [2] or Powerlink [3] use a network stack specifically
designed for the protocol1. Other protocols, such as the Data
Distributed Services (DDS) [4], OPC-UA [5] or Profinet are
built on top of the well known TCP/IP and UDP/IP OSI
layers. This facilitates the process of interoperating with
common transport protocols and ensures a high compatibility
between devices. However, their corresponding network
stacks and drivers are typically not optimized for real-time
communications. The real-time performance is limited
when compared to other Ethernet alternatives with specific
network stacks.

In this work, we aim to measure and evaluate the real-time
performance of the Linux network subsystem with the
UDP and IP protocols. UDP is used by several real-time
transport protocols such as the Real Time Publish Subscribe

1These network stacks have been specifically designed to meet the desired
real-time capabilities.

protocol (RTPS). We aim to determine which configuration
provides better isolation in a mixed-critical traffic scenario.
To achieve real-time performance, the network stack will be
deployed in a Real-Time Operating System (RTOS). In the
case of Linux, the standard kernel does not provide real-
time capabilities. However, with the Real-time Preemption
patch (PREEMPT-RT), it is possible to achieve real-time
computing capabilities as demonstrated [6]. Despite the
Linux network subsystem not being optimized for bounded
maximum latencies, with this work, we expect to achieve
reasonable deterministic communications with PREEMPT-
RT, as well as a suitable configuration.

The content below is structured as follows: section II
introduces related previous work. In particular, we review
the real-time performance of Linux with PREEMPT-RT and
the real-time communications in Linux for robotics. Section
III outlines an overview of the key components of the Linux
kernel we have used to configure our system to optimize
the real-time communications over Ethernet. Section IV
discusses the experimental results obtained while evaluating
the presented hypotheses. Finally, Section V presents our
conclusions and future work.

II. RELATED WORK

In [7], Abeni et al. compared the networking performance
between a vanilla kernel 3.4.41 and the same version
with PREEMPT-RT. They investigated the throughput and
latency with different RT patch implementations. They also
explained some of the key ideas of the Linux Network
architecture in PREEMPT-RT and showed an evaluation of
the network latency by measuring the round-trip latency with
the UDP protocol. The results showed that the differences
between the kernel version tested appeared when the
system was loaded. For the kernel versions where the soft
Interrupt Requests (IRQ) were served in the IRQ threads
the results showed that latency was bounded. However, the
influence of concurrent traffic was not discussed in the paper.

Khoronzhuk and Valris [8] showed an analysis of the
deterministic performance of the network stack with the
aim of using it with TSN. They used a real-time kernel 4.9

ar
X

iv
:1

80
8.

10
82

1v
1

 [
cs

.O
S]

 3
0

A
ug

 2
01

8

with a 1 Gbps Ethernet network interface. They concluded
that there is jitter in the order of hundreds of microseconds
across the networking stack layers, both in transmission and
reception paths.

For an appropriate setup of our infrastructure, we made active
use of the work presented at [9] and [10], which provide
some guidelines to configure a PREEMPT-RT based OS for
real-time networking.

III. SETTING UP REAL-TIME COMMUNICATIONS IN
LINUX

A. The Real-time Preemption patch (PREEMPT-RT)

There are currently different approaches to use Linux for
real-time applications. A common path is to leave the most
critical tasks to an embedded RTOS and give to Linux the
highest level commands. A second approach is to use a
dual-kernel scheme like Xenomai [11] and RTAI [12] which
deploy a microkernel running in parallel with a separate
Linux kernel. The problem for this kind of solution is that
it requires special tools and libraries.

A third approach is to use a single-kernel. The Real-Time
Linux (RTL) Collaborative Project [13] is the most relevant
open-source solution for this option. The project is based
on the PREEMPT-RT patch and aims to create a predictable
and deterministic environment turning the Linux kernel
into a viable real-time platform. The ultimate goal of the
RTL project is to mainline the PREEMPT-RT patch. The
importance behind this effort is not related to the creation
of a Linux-based RTOS, but to provide the Linux kernel
with real-time capabilities. The main benefit is that it
is possible to use the Linux standard tools and libraries
without the need of specific real-time APIs. Also, Linux is
widely used and strongly supported, this helps to keep the
OS updated with new technologies and features, something
which is often a problem in smaller projects due to resource
limitations.

B. The Linux Networking Architecture

While it is possible to bypass the Linux Network Stack
using custom drivers or user-space network libraries, we
are interested in using the Linux Network Stack; mainly,
because it is easier to maintain and integrate with a
user-space application or communication middlewares. In
addition, the Linux Network Stack supports a wide range
of drivers which allow to deploy an application in different
devices.

B.1. Linux Traffic Control: An important module of the
networking subsystem is the Linux kernel packet scheduler,
which is configured with the user-space tool Linux Traffic
Control (TC) [14]. TC provides mechanisms to control the
way enqueued packets are sent and received, it provides a
set of functionality such as shaping, scheduling, policing

and dropping network traffic.

The main element of the Linux packet scheduler module
are the queuing disciplines (Qdisc), which are network
traffic disciplines to create queues and quality of service
(QoS) rules for reception and transmission. There are
ingress and egress Qdisc for reception and transmission
respectively. The egress Qdisc provides shaping, scheduling
and filter capabilities for data transmission from the network
protocol layers to the network interface ring buffers. On the
other hand, the ingress Qdisc provides filter and dropping
capabilities for the reception path from the network interface
ring buffers to the network protocol layers (although these
are commonly less used).

For the egress Qdisc there are two basic types of disciplines:
classless Qdisc and classful Qdisc. The classless Qdisc does
not contain another Qdisc so there is only one level of
queuing. The classless Qdisc only determines whether the
packet is classified, delayed or dropped. The classful Qdisc
can contain another Qdisc, so there could be several levels
of queues. In such case, there may be different filters to
determine from which Qdisc packets will be transmitted.

Qdisc can be used to avoid traffic congestion with non
real-time traffic at the transmission path (figure 1). For a
classless Qdisc, the default discipline is the PFIFO_FAST,
which has three FIFO priority bands. In the case of a
classful Qdisc there is the PRIO qdisc which can contain an
arbitrary number of classes of differing priority. There are
also specific egress Qdisc destined for multiqueue network
devices, for example the MQPRIO Qdisc [15], which is a
queuing discipline to map traffic flows to hardware queues
based on the priority of the packet. This Qdisc will dequeue
packets with higher priority allowing to avoid contention
problems in the transmission path. In addition to the priority
Qdisc, it is common to attach a shaper to limit low priority
traffic bandwidth such as a the ‘Token Bucket Filter’ TBF
Qdisc [16].

Recently, because of the interest in support TSN in the Linux
network stack, new Qdiscs have been created or are currently
under development. The IEEE 802.1Q-2014 Credit Based
Shaper (CBS) [17], Qdisc has already been included from
kernel 4.15. The CBS is used to enforce a Quality of Service
by limiting the data rate of a traffic class. Currently there are
two Qdisc under development, the ‘Earliest Transmit Time
First (ETF)’ [18] which provides a per-queue transmit time
based scheduling and the ‘Time-Aware Priority Scheduler’
(TAPRIO) which provides per-port scheduling. These Qdisc
will allow to create deterministic scheduling in software or
to offload the work to the network hardware if it is supported.

B.2. Traffic classification: In order to steer a traffic flow to
a Qdisc or to a ring buffer, the traffic flow must be classified
usually by marking the traffic with a priority. There are

Fig. 1: Linux networking stack transmission path

several ways to set the priority of a specific traffic flow: a)
from the user-space using socket options SO_PRIORITY
and IP_TOS, b) with iptables and c) with net_prio cgroups.
Setting the priority of a flow maps the traffic from a socket
(or an application) to a Socket Buffer (SKB) priority, which
is an internal priority for the kernel networking layer. The
SKB priority is used by the MQPRIO Qdisc to map the
traffic flow to a traffic class of the Qdisc. At the same time,
each traffic class is mapped to a TX ring buffer.

B.3. Network hard IRQ threads and softirqs: At the
reception path, the processing of the packets is driven by the
kernel interrupt handling mechanism and the “New API”
(NAPI) network drivers. NAPI is a mechanism designed
to improve the performance for high network loads. When
there is a considerable incoming traffic, a high number
of interrupts will be generated. Handling each interrupt to
process the packets is not very efficient when there are
many packets already queued. For this reason NAPI uses
interrupt mitigation when high bandwidth incoming packets
are detected. Then, the kernel switches to a polling-based
processing, checking periodically if there are queued
packets. When there is not as much load, the interrupts
are re-enabled again. In summary, the Linux kernel uses
the interrupt-driven mode by default and only switches to
polling mode when the flow of incoming packets exceeds
a certain threshold, known as the “weight” of the network
interface. This approach works very well as a compromise

between latency and throughput, adapting its behavior to
the network load status. The problem is that NAPI may
introduce additional latency, for example when there is
bursty traffic.

There are some differences between how PREEMPT-RT
and a normal kernel handle interrupts and consequently how
packets are handled at the reception path. The modifications
of PREEMPT-RT allow to configure the system to improve
the networking stack determinism.

In PREEMPT-RT, most interrupt request (IRQ) handlers
are forced to run in threads specifically created for that
interrupt. These threads are called IRQ threads [19].
Handling IRQs as kernel threads allows priority and
CPU affinity to be managed individually. IRQ handlers
running in threads can themselves be interrupted, so
that the latency due to interrupts are mitigated. For a
multiqueue NIC, there is an IRQ for each TX and RX
queue of the network interface, allowing to prioritize the
processing of each queue individually. For example, it
is possible to use a queue for real-time traffic and raise
the priority of that queue above the other queue IRQ threads.

Another important difference is the context where the softirq
are executed. From version 3.6.1-rt1, the soft IRQ handlers
are executed in the context of the thread that raised that
Soft IRQ [20]. This means that the NET_RX soft IRQ will
be normally executed in the context of the network device
IRQ thread, which allows a fine control of the networking
processing context. However, if the network IRQ thread is
preempted or it exhausts its NAPI weight time slice, it is
executed in the ksoftirqd/n (where n is the logical number
of the CPU).

Processing packets in the ksoftirqd/n context is troublesome
for real-time because this thread is used by different
processes for deferred work and can add latency. Also, as
the ksoftirqd runs with SCHED_OTHER policy, the thread
execution can be easily preempted. In practice, the soft
IRQs are normally executed in the context of NIC IRQ
threads and in the ksoftirqd/n thread for high network loads
and under heavy stress (CPU, memory, I/O, etc..).

B.4. Socket allocation: One of the current limitations of
the network stack for bounded latency is socket memory
allocation. Every packet in the network stack needs a sckbuff
struct which holds meta-data of the packet. This struct
needs to be allocated for each packet, and the time required
for the allocation represents a large part of the overhead for
processing the packet and jitter source.

One of the last projects of the Linux network developers is
the XDP or eXpress Data Path [21] which aims to provide
a high performance, programmable network data path in the
Linux kernel. XDP will provide faster packet processing by

eliminating the socket meta-data allocation. Despite real-
time communications are not the main motivation behind
this project, XDP looks like an interesting feature to be
used as an express data path for real-time communications
[22].

IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate the real-time performance of the network stack,
we used two embedded devices, measuring the latencies of
a round-trip test.

A. Round-trip test

The network latency is measured as the round-trip time
(RTT), also called ping-pong test. For the test we use a client
in one of the devices and a server in the other. The round-
trip latency is measured as the time it takes for a message
to travel from the client to the server, and from the server
back to the client.
For the client and server one we used a modified version
of cyclictest [23] which allows us to save the statistics and
create latency histograms which show the amount of jitter
and worst-case latency of the test. Additionally, we count
the number of missed deadlines for a 1 millisecond target
loop time.

For the timing loop we used the clock_nanosleep primitive.
We also used memory locking, the FIFO scheduler and
set a real-time priority of 80. In all the tests, we marked
the traffic as priority traffic using the socket option
SO_PRIORITY. To generate load in the system, we used
the program stress and, to generate traffic, the program iperf.

Fig. 2: Graphical presentation of the measured round-trip latency. T1 is
the time-stamp when data is send from the round-trip client and T2 is the
time-stamp when data is received again at the round-trip client. Round-trip
latency is defined as T2 - T1.

A.1. Experimental setup: The main characteristics of the
embedded device are:

Processor: ARMv7 Processor (2 cores).
Kernel version: 4.9.30.
PREEMPT-RT patch (when used): rt21.
Link capacity: 100/1000 Mbps, Full-Duplex.

Each device has a switched endpoint as network interface.
The devices are connected in linear topology with a PC.

The PC is simply used to generate contending traffic, also
referred in this work as background traffic.

The traffic used to measure the end-to-end latency is
marked with higher priority than the background traffic. The
embedded device network interface has 3 queues (tx_q0,
tx_q1, tx_q3). In our case, the network drivers use the
Priority Code Point (PCP) of the Ethernet header to map
a frame with a TX queue. Priority 4 is mapped to tx_q0,
priorities 2 and 3 to tx_q1 and the rest of priorities to tx_q2.
We configure a MQPRIO qdisc to map the SKB priorities
with the same classification criteria than the one used by the
network device drivers. The Qdisc queues are mapped one
to one with each hardware queue, so we can avoid traffic
contention at the network layer in the transmission path.

tc qdisc replace dev eth1 root mqprio num_tc 3 \

map 2 2 1 1 0 2 2 2 2 2 2 2 2 2 2 2

queues 1@0 1@1 1@2 hw 0

This command maps the SKB priority 4 with queue 0, SKB
priorities 2 and 3 with queue 1 and the rest of priorities with
queue 2. Checking the classes setting, we get the following
output:

root@DUT1:~# tc -g qdisc show dev eth1

qdisc mqprio 8001: root tc 3 map 2 2 1 1 0 2 2 2 2 2 2 2 2 2 2 2

queues:(0:0) (1:1) (2:2)

qdisc pfifo_fast 0: parent 8001:3 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1

qdisc pfifo_fast 0: parent 8001:2 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1

qdisc pfifo_fast 0: parent 8001:1 bands 3 priomap 1 2 2 2 1 2 0 0 1 1 1 1 1 1 1 1

Apart from the networking layer mapping, we need to map
the SKB priorities with the priority used by the Ethernet
layer, which is the PCP. We set a one to one configuration.
This sets the priority in VLAN field of the Ethernet header
according to the SKB priority configured in the user-space.
The PCP is used by the Network interface Card (NIC) to
map traffic to the hardware queues.

root@DUT1:~# ip link set eth1.2 type vlan egress 0:0 1:1 2:2 3:3 4:4 5:5 6:6 7:7

B. Task and IRQ affinity and CPU shielding

In real-time systems, real-time tasks and interrupts can be
pinned to a specific CPU to separate their resources from
non real-time tasks. This is an effective way to prevent non
real-time processes interferences.

There are several ways to set the affinity of tasks and IRQs
with CPUs. For the experiments, we decided to compare
two levels of isolation. In the first case, we pin the real-time
task the IRQ of the real-time traffic queue to the same CPU.
We use “pthread_setaffinity_np” and “smp irq affinity” to
set the priorities of the IRQs.

In the second case, we use cpusets [24], which is part of
the Linux cgroups to assign a CPU for real-time tasks. With

this method, we can also migrate all processes running in
the isolated CPU, so that only the real-time task is allowed
to run in that CPU2. We also set the affinity of all the IRQs
to the non real-time CPU, while the IRQs of the real-time
queue (of the network device) are set with affinity in the
isolated CPU.

In the experimental setup, we use the described methods to
isolate applications sending and receiving real-time traffic.
The tests are run using different configurations: no-rt,
rt-normal, rt-affinities and rt-isolation. In the first case, no-rt,
we use a vanilla kernel. In the second case, rt-normal, we
use a PREEMPT-RT kernel without binding the round-trip
programs and network IRQs to any CPU. In the third case,
rt-affinities, we bind the IRQ thread of the priority queue
and the client and server programs to CPU 1 of each device.
Finally, in the fourth case, rt-isolation, we run the round-
trip application in an isolated CPU. In all the cases, we
set the priority of the RTT test client and server to a 80 value.

In order to have an intuition about the determinism of
each configuration, we ran a 1 hour cyclictest, obtaining
the following worst-case latencies: no-rt: 13197 µs, rt-
normal/rt-affinities: 110 µs and rt-isolation: 88 µs.

B.1. System and network load: For each case, we run the
tests in different load conditions: idle, stress, tx-traffic and
rx-traffic:

idle: No other user-space program running except the
client and server.
stress: We generate some load to stress the CPU and
memory and block memory.3

tx-traffic: We generate some concurrent traffic in the
transmission path of the client. We send 100 Mbps
traffic from the client to the PC.
rx-traffic: We generate some concurrent traffic in the
reception path of the server. We send 100 Mbps traffic
from the PC to the server.

When generating concurrent traffic, there is also congestion
in the MAC queues of both devices. However, as the traffic
of the test is prioritized, the delay added by the link layer
is not meaningful for the test.

C. Results

We have compared the results obtained for a round-trip test
of 3 hours of duration, sending UDP packets of 500 Bytes
at a 1 millisecond rate. The Tables I, II, III, IV show the
statistics of the different configuration used under different
conditions. For real-time benchmarks, the most important
metrics are the worst-cases (Max), packet loss and the
number of missed deadlines. In this case, we decided to

2Only some kernel processes will run in the isolated CPU which will
reduce the system jitter considerably.

3Command used: stress -c 2 -i 2 -m 2 –vm-bytes 128M -d 2 –hdd-bytes
15M

set a 1 millisecond deadline to match it with the sending rate.

As it can be seen in Table I, the non real-time kernel results
in what seems to be the best average performance, but in
contrast, it has a high number of missed deadlines and a
high maximum latency value; even when the system is idle.
The latency suffers specially when the system is stressed
due to the lack of preemption in the kernel.

For rt-normal (Table II), the latencies are bounded when the
system is stressed. When generating concurrent traffic, we
observe higher latency values and some missed deadliness.

For rt-affinities, we can see an improvement compared to
the previous scenario. Specially for concurrent traffic (Table
III). We can also see that when pinning the round-trip
threads and the Ethernet IRQs for the priority to the same
CPU, the latency seems to be bounded.

In the case of no-isolation (table IV), we appreciate a similar
behavior when compared to the affinity case. We can see
that stressing the non isolated CPU has some impact on
the tasks of the isolated core. However, in the idle case,
for short test we observed very low jitter. To the best
of our knowledge, one of the main contributions of such
latency was the scheduler ticker, which is generated each
10 milliseconds4. While it is possible to avoid it in the
client because it runs in a timed loop, in the server side, it
is not possible to avoid the ticker. As both devices are not
synchronized, at some point, the clock of the server side
drifts from the client and the scheduler ticker interferes in
the server execution. This effect can be seen in Figure 4.

When running the test with 200 Mbps RX-traffic, we
observed that best-effort traffic is processed in the
ksoftirqd/0 context continuously. This generates high
latency spikes in all the cases, even for the isolation case.
To trace the source of these latency spikes, we should trace
the kernel taking a snapshot when the latency occurs.

V. CONCLUSION AND FUTURE WORK

The results obtained prove that the Linux real-time setup
presented improves greatly the determinism of communi-
cations using the UDP protocol. First, we confirm that the
communication delay caused when the system is under heavy
load is mitigated by making use of a real-time kernel and by
running the application with real-time priority.
Second, we demonstrate that, whenever there is concurrent
traffic, simply setting the priorities of the real-time process
is not enough. Separating the real-time application and the
corresponding interrupt in a CPU seems to be an effective
approach to avoid high latencies. For higher concurrent
traffic loads, however, we can still see unbounded latency

4This effect was observed using kernel tracer ‘ftrace’ and correlating the
latency measurements with the traces during the test.

TABLE I: Round-trip latency results: No RT

No RT, Kernel version: 4.9.30
Min(µs) Avg(µs) Max(µs) Missed deadline Packet loss

Idle 193 217 1446 15 / 600000 0 / 600000
Stress 262 560 46742 20979 / 600000 0 / 600000

TX traffic at 100 Mbps 195 378 7160 2298 / 600000 0 / 600000
RX traffic at 100 Mbps 192 217 1426 22 / 600000 0 / 600000

TABLE II: Round-trip latency results: RT Normal

RT Normal, Kernel version: 4.9.30-rt21
Min(µs) Avg(µs) Max(µs) Missed deadline Packet loss

Idle 251 266 522 0 / 600000 0 / 600000
Stress 254 341 618 0 / 600000 0 / 600000

TX traffic at 100 Mbps 265 320 25727 20 / 600000 0 / 600000
RX traffic at 100 Mbps 263 292 898 9 / 600000 0 / 600000

TABLE III: Round-trip latency results: RT, CPU Affinity

RT Affinity, Kernel version: 4.9.30-rt21
Min(µs) Avg(µs) Max(µs) Missed deadline Packet loss

Idle 275 289 644 0 / 600000 0 / 600000
Stress 277 358 828 0 / 600000 0 / 600000

TX traffic at 100 Mbps 277 322 568 0 / 600000 0 / 600000
RX traffic at 100 Mbps 274 287 592 0 / 600000 0 / 600000

TABLE IV: Round-trip latency results: RT, CPU Isolated

RT, CPU Isolated, Kernel version: 4.9.30-rt21
Min(µs) Avg(µs) Max(µs) Missed deadline Packet loss

Idle 297 311 592 0 / 600000 0 / 600000
Stress 298 355 766 0 / 600000 0 / 600000

TX traffic at 100 Mbps 301 336 617 0 / 600000 0 / 600000
RX traffic at 100 Mbps 296 312 542 0 / 600000 0 / 600000

and further research is required to overcome this limitation
with our current setup.

We conclude that, under certain circumstances and
for a variety of stress and traffic overload situations,
Linux can indeed meet some real-time constraints for
communications. Hereby, we present an evaluation of the
Linux communication stack meant for real-time robotic
applications. Future work should take into account that the
network stack has not been fully optimized for low and
bounded latency; there is certainly room for improvement.
It seems to us that there is some ongoing work inside the
Linux network stack, such as the XDP [21] project, showing
promise for an improved real-time performance. In future
work, it might be interesting to test some of these features
and compare the results.

REFERENCES

[1] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches,
“Time-sensitive networking for robotics,” CoRR, vol. abs/1804.07643,
2018. [Online]. Available: http://arxiv.org/abs/1804.07643

[2] “PROFINET the leading industrial ethernet standard,” https://www.
profibus.com/technology/profinet/, accessed: 2018-04-12.

[3] “POWERLINK - powerlink standarization group,” https://www.
ethernet-powerlink.org/powerlink/technology, accessed: 2018-04-12.

[4] “Data Distribution Service Specification, version 1.4,” https://www.
omg.org/spec/DDS/1.4/, accessed: 2018-04-12.

[5] “OPC-UA - the opc unified architecture (ua),” https://opcfoundation.
org/about/opc-technologies/opc-ua/, accessed: 2018-04-12.

[6] H. Fayyad-Kazan, L. Perneel, and M. Timmerman, “Linuxpreempt-rt
vs. commercial rtoss: how big is the performance gap?” GSTF
Journal on Computing (JoC), vol. 3, no. 1, 2018. [Online]. Available:
http://dl6.globalstf.org/index.php/joc/article/view/1088

[7] L. Abeni and C. Kiraly, “Investigating the network performance of a
real-time linux kernel.”

[8] I. Khoronzhuk and P. Varis, “Realtime Performance of Networ-
king Stack – SFO17-209,” http://connect.linaro.org/resource/sfo17/
sfo17-209/, accessed: 2018-04-12.

[9] “IRQs: the Hard, the Soft, the Threaded and the Preemptible -
alison chaiken,” https://events.static.linuxfound.org/sites/events/files/
slides/Chaiken_ELCE2016.pdf, accessed: 2018-04-12.

[10] “Real-time Ethernet (UDP) worst-case round-
trip time monitoring - osadl,” https://www.
osadl.org/Real-time-Ethernet-UDP-worst-case-roun.
qa-farm-rt-ethernet-udp-monitor.0.html, accessed: 2018-04-12.

[11] “Xenomai project home page,” April 2018, [Accessed: 2018-04-12].
[Online]. Available: https://xenomai.org/

[12] “Rtai project home page,” April 2018, [Accessed: 2018-04-12].
[Online]. Available: https://www.rtai.org/

[13] “The RTL Collaborative Project,” https://wiki.linuxfoundation.org/
realtime/rtl/start, accessed: 2018-04-12.

http://arxiv.org/abs/1804.07643
https://www.profibus.com/technology/profinet/
https://www.profibus.com/technology/profinet/
https://www.ethernet-powerlink.org/powerlink/technology
https://www.ethernet-powerlink.org/powerlink/technology
https://www.omg.org/spec/DDS/1.4/
https://www.omg.org/spec/DDS/1.4/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
http://dl6.globalstf.org/index.php/joc/article/view/1088
http://connect.linaro.org/resource/sfo17/sfo17-209/
http://connect.linaro.org/resource/sfo17/sfo17-209/
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://events.static.linuxfound.org/sites/events/files/slides/Chaiken_ELCE2016.pdf
https://www.osadl.org/Real-time-Ethernet-UDP-worst-case-roun.qa-farm-rt-ethernet-udp-monitor.0.html
https://www.osadl.org/Real-time-Ethernet-UDP-worst-case-roun.qa-farm-rt-ethernet-udp-monitor.0.html
https://www.osadl.org/Real-time-Ethernet-UDP-worst-case-roun.qa-farm-rt-ethernet-udp-monitor.0.html
https://xenomai.org/
https://www.rtai.org/
https://wiki.linuxfoundation.org/realtime/rtl/start
https://wiki.linuxfoundation.org/realtime/rtl/start

(a) (b)

(c) (d)

Fig. 3: Real-time Ethernet round-trip-time histograms. a) Idle system. b) System under load (stress). c) Concurrent low priority traffic in the transmission
path. d) Concurrent low priority traffic in the reception path.

Fig. 4: Time-plot for isolated CPU. At the beginning, we can observe
the effect of the scheduler ticker preempting the real-time task and adding
latency to the round-trip test latencies.

[14] “Traffic control - linux queuing disciplines,” http://man7.org/linux/
man-pages/man8/tc.8.html, accessed: 2018-04-12.

[15] “Multiqueue Priority Qdisc - linux man pages,” https://www.
systutorials.com/docs/linux/man/8-tc-mqprio/, accessed: 2018-04-12.

[16] “Token Bucket Filter - linux queuing disciplines,” https://www.
systutorials.com/docs/linux/man/8-tc-tbf/, accessed: 2018-04-12.

[17] “ CBS - Credit Based Shaper (CBS) Qdisc,” http://man7.org/linux/

man-pages/man8/tc-cbs.8.html, accessed: 2018-04-12.
[18] “Scheduled packet transmission: Etf,” [Accessed: 2018-04-12].

[Online]. Available: https://lwn.net/Articles/758592/
[19] J. Edge, “Moving interrupts to threads,” October 2008, [Accessed:

2018-04-12]. [Online]. Available: https://lwn.net/Articles/302043/
[20] J. Corbet, “Software interrupts and realtime,” October 2012,

[Accessed: 2018-04-12]. [Online]. Available: https://lwn.net/Articles/
520076/

[21] “XDP (eXpress Data Path) documentation,” https://lwn.net/Articles/
701224/, accessed: 2018-04-12.

[22] “The road towards a linux tsn infrastructure, jesus sanchez-
palencia,” April 2018, [Accessed: 2018-04-12]. [Online]. Available:
https://elinux.org/images/5/56/ELC-2018-USA-TSNonLinux.pdf

[23] “Cyclictest,” April 2018, [Accessed: 2018-04-12]. [Online]. Avai-
lable: https://wiki.linuxfoundation.org/realtime/documentation/howto/
tools/cyclictest

[24] S. Derr, “CPUSETS,” https://www.kernel.org/doc/Documentation/
cgroup-v1/cpusets.txt, accessed: 2018-04-12.

http://man7.org/linux/man-pages/man8/tc.8.html
http://man7.org/linux/man-pages/man8/tc.8.html
https://www.systutorials.com/docs/linux/man/8-tc-mqprio/
https://www.systutorials.com/docs/linux/man/8-tc-mqprio/
https://www.systutorials.com/docs/linux/man/8-tc-tbf/
https://www.systutorials.com/docs/linux/man/8-tc-tbf/
http://man7.org/linux/man-pages/man8/tc-cbs.8.html
http://man7.org/linux/man-pages/man8/tc-cbs.8.html
https://lwn.net/Articles/758592/
https://lwn.net/Articles/302043/
https://lwn.net/Articles/520076/
https://lwn.net/Articles/520076/
https://lwn.net/Articles/701224/
https://lwn.net/Articles/701224/
https://elinux.org/images/5/56/ELC-2018-USA-TSNonLinux.pdf
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cpusets.txt

	I Introduction
	II Related work
	III Setting up real-time communications in Linux
	A The Real-time Preemption patch (PREEMPT-RT)
	B The Linux Networking Architecture
	B.1 Linux Traffic Control
	B.2 Traffic classification
	B.3 Network hard IRQ threads and softirqs
	B.4 Socket allocation

	IV Experimental setup and results
	A Round-trip test
	A.1 Experimental setup

	B Task and IRQ affinity and CPU shielding
	B.1 System and network load

	C Results

	V Conclusion and future work
	References

